Volume 45 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
SUN Bo, LIANG Yong, HAN Mutian, et al. GNSS-IR soil moisture inversion method based on GA-SVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 486-492. doi: 10.13700/j.bh.1001-5965.2018.0417(in Chinese)
Citation: SUN Bo, LIANG Yong, HAN Mutian, et al. GNSS-IR soil moisture inversion method based on GA-SVM[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 486-492. doi: 10.13700/j.bh.1001-5965.2018.0417(in Chinese)

GNSS-IR soil moisture inversion method based on GA-SVM

doi: 10.13700/j.bh.1001-5965.2018.0417
Funds:

National Key R & D Program of China 2016YFC0803104

Grant of Beihang University BeiDou Technology Transformation and Industrialization BARI1709

Shandong Agricultural University Funding of First-class Disciplines XXXY201703

Shandong Agricultural University Key Cultivation Discipline Funding for NSFC Proposers 

Jinhua Science and Technology Correspondent Project 20180109151645582

More Information
  • Corresponding author: LIANG Yong, E-mail:yongl@sdau.edu.cn
  • Received Date: 11 Jul 2018
  • Accepted Date: 19 Oct 2018
  • Publish Date: 20 Mar 2019
  • In order to improve the precision of soil moisture measurement in a wide range, in this paper, the global navigation satellite system interferometry and reflectometry (GNSS-IR) for soil moisture was studied and a soil moisture inversion model based on support vector machine (SVM) was proposed. In this model, the automatic optimizing function of genetic algorithm (GA) was applied to optimize the parameters of SVM. The results show that the mean absolute percentage error (MAPE), the maximum relative error (MRE) and the coefficient of determination for equation of linear regression are 0.69%, 1.22% and 0.9569 respectively between the soil moisture inverted by the proposed GA-SVM model and the ground measured values. In addition, the performance of GA-SVM model was also compared with the statistical regression, particle swarm optimization SVM model (PSO-SVM) and back propagation (BP) neural network. The comparison results show that the GA-SVM method is more suitable for the GNSS-IR soil moisture inversion than other machine learning algorithms in small training set scenario, and it has higher inversion precision and better generalization performance.

     

  • loading
  • [1]
    JACKSON T J, SCHMUGGE J, ENGMAN E T.Remote sensing applications to hydrology:Soil moisture[J].Hydrological Sciences Journal, 1996, 41(4):517-530. doi: 10.1080/02626669609491523
    [2]
    严颂华, 龚健雅, 张训械, 等.GNSS-R测量地表土壤湿度的地基实验[J].地球物理学报, 2011, 54(11):2735-2744. doi: 10.3969/j.issn.0001-5733.2011.11.003

    YAN S H, GONG J Y, ZHANG X X, et al.Ground based GNSS-R observations for soil moisture[J].Chinese Journal of Geophysics, 2011, 54(11):2735-2744(in Chinese). doi: 10.3969/j.issn.0001-5733.2011.11.003
    [3]
    MARTIN-NEIRA M.A pasive reflectometry and interferometry system (PARIS) application to ocean altimetry[J].ESA Journal, 1993, 17(4):331-355.
    [4]
    RODRIGUEZ-ALVAREZ N, BOSCH-LLUIS X, CAMPS A, et al.Soil moisture retrieval using GNSS-R techniques:Experimental results over a bare soil field[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11):3616-3624. doi: 10.1109/TGRS.2009.2030672
    [5]
    LARSON K M, SMALL E E, GUTMANN E, et al.Using GPS multipath to measure soil moisture fluctuations:Initial results[J].GPS Solutions, 2008, 12(3):173-177. doi: 10.1007/s10291-007-0076-6
    [6]
    CHEW C C, SMALL E E, LARSON K M, et al.Vegetation sen-sing using GPS-interferometric reflectometry:Theoretical effects of canopy parameters on signal-to-noise ratio data[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5):2755-2764. doi: 10.1109/TGRS.2014.2364513
    [7]
    LI F, PENG X, CHEN X, et al.Analysis of key issues on GNSS-R soil moisture retrieval based on different antenna patterns[J].Sensors, 2018, 18(8):2498-2513. doi: 10.3390/s18082498
    [8]
    YAN S H, ZHANG N, CHEN N C, et al.Feasibility of using signal strength indicator data to estimate soil moisture based on GNSS interference signal analysis[J].Remote Sensing Letters, 2018, 9(1):61-70. doi: 10.1080/2150704X.2017.1384587
    [9]
    ZHANG S B, ROUSSEL N, BONIFACE K, et al.Use of reflected GNSS SNR data to retrieve either soil moisture or vegetation height from a wheat crop[J].Hydrology & Earth System Sciences Discussions, 2017, 21(9):1-26.
    [10]
    LARSON K M, BRAUN J J, SMALL E E, et al.GPS multipath and its relation to near-surface soil moisture content[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(1):91-99. doi: 10.1109/JSTARS.2009.2033612
    [11]
    敖敏思, 朱建军, 胡友健, 等.利用SNR观测值进行GPS土壤湿度监测[J].武汉大学学报(信息科学版), 2015, 40(1):117-120.

    AO M S, ZHU J J, HU Y J, et al.Comparative experiments on soil moisture monitoring with GPS SNR observations[J].Geomatics and Information Science of Wuhan University, 2015, 40(1):117-120(in Chinese).
    [12]
    CHEW C C, SMALL E E, LARSON K M, et al.Effects of near-surface soil moisture on GPS SNR data:Development of a retrieval algorithm for soil moisture[J].IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1):537-543. doi: 10.1109/TGRS.2013.2242332
    [13]
    杨磊, 吴秋兰, 张波, 等.SVRM辅助的北斗GEO卫星反射信号土壤湿度反演方法[J].北京亚洲成人在线一二三四五六区学报, 2016, 42(6):1134-1141.

    YANG L, WU Q L, ZHANG B, et al.SVRM-assisted soil moisture retrieval method using reflected signal from BeiDou GEO satellites[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6):1134-1141(in Chinese).
    [14]
    ARROYO A A, CAMPS A, AGUASCA A, et al.Dual-polarization GNSS-R interference pattern technique for soil moisture mapping[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5):1533-1544. doi: 10.1109/JSTARS.2014.2320792
    [15]
    BILICH A, LARSON K M.Correction published 29 March 2008:Mapping the GPS multipath environment using the signal-to-noise ratio(SNR)[J].Radio Science, 2016, 42(6):1-16. doi: 10.1029/2008RS003839
    [16]
    CHEW C C, SMALL E E, LARSON K M.An algorithm for soil moisture estimation using GPS-interferometric reflectometry for bare and vegetated soil[J].GPS Solutions, 2016, 20(3):1-13.
    [17]
    VAPNIK V.The nature of statistical learning theory[C]//Conference on Artificial Intelligence.Berlin: Springer, 1995: 988-999.
    [18]
    李晓宇, 张新峰, 沈兰荪.一种确定径向基核函数参数的方法[J].电子学报, 2005, 33(12):2459-2463.

    LI X Y, ZHANG X F, SHEN L S.A selection means on the parameter of radius basis function[J].Acta Electronica Sinica, 2005, 33(12):2459-2463(in Chinese).
    [19]
    HOLLAND J H. Genetic algorithms[J].Scientific American, 1992,267(1):66-72. doi: 10.1038/scientificamerican0792-66
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(958) PDF downloads(452) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return