Volume 45 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
SHI Shaokun, ZHAO Jiufen, CHONG Yang, et al. Novel second-order sliding mode control based 3D guidance law with impact angle constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 614-623. doi: 10.13700/j.bh.1001-5965.2018.0387(in Chinese)
Citation: SHI Shaokun, ZHAO Jiufen, CHONG Yang, et al. Novel second-order sliding mode control based 3D guidance law with impact angle constraints[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 614-623. doi: 10.13700/j.bh.1001-5965.2018.0387(in Chinese)

Novel second-order sliding mode control based 3D guidance law with impact angle constraints

doi: 10.13700/j.bh.1001-5965.2018.0387
More Information
  • Corresponding author: ZHAO Jiufen, E-mail:xiangcdx1994@163.com
  • Received Date: 27 Jun 2018
  • Accepted Date: 27 Jul 2018
  • Publish Date: 20 Mar 2019
  • To deal with the problem of missile for attacking ground maneuvering target in 3D space, a 3D finite-time guidance law with impact angle constraints is proposed. In order to improve convergence speed and suppress chattering problem, the nonsingular fast terminal second-order sliding mode control based 3D guidance law with coupling terms is designed based on the nonsingular fast terminal sliding surface and the second-order sliding mode control theory. System model linearization is not needed and singular problem is avoided in the design process. A nonhomogeneous disturbance observer is designed to estimate and compensate the total disturbance, which is caused by target maneuvering information and coupling terms of line of sight. And the stability and finite-time convergent characteristics of the proposed guidance law are proved mathematically. The effectiveness and superiority of the proposed guidance law are verified by numerical simulation.

     

  • loading
  • [1]
    黄诘, 张友安, 刘永新.一种有撞击角和视场角约束的运动目标的偏置比例导引算法[J].宇航学报, 2016, 37(2):195-202. doi: 10.3873/j.issn.1000-1328.2016.02.009

    HUANG J, ZHANG Y A, LIU Y X.A biased proportional guidance algorithm for moving target with impact angle and field-of-view constraints[J].Journal of Astronautics, 2016, 37(2):195-202(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.02.009
    [2]
    ERER K S, TEKIN R.Impact time and angle control based on constrained optimal solutions[J].Journal of Guidance, Control, and Dynamics, 2016, 39(10):1-7.
    [3]
    TAUB I, SHIMA T.Intercept angle missile guidance under time varying acceleration bounds[J].Journal of Guidance, Control, and Dynamics, 2013, 36(3):686-699. doi: 10.2514/1.59139
    [4]
    LEE C H, KIM T H, TAHK M J.Interception angle control guidance using proportional navigation with error feedback[J].Journal of Guidance, Control, and Dynamics, 2013, 36(5):1556-1561. doi: 10.2514/1.58454
    [5]
    WANG H, LIN D, CHENG Z, et al.Optimal guidance of extended trajectory shaping[J].Chinese Journal of Aeronautics, 2014, 27(5):1259-1272. doi: 10.1016/j.cja.2014.03.022
    [6]
    王晓芳, 王紫扬, 林海.一种同时具有攻击时间和攻击角度约束的协同制导律[J].弹道学报, 2017, 29(4):1-8. doi: 10.3969/j.issn.1004-499X.2017.04.001

    WANG X F, WANG Z Y, LIN H.A cooperative guidance law with constraints of impact time and impact angle[J].Journal of Ballistics, 2017, 29(4):1-8(in Chinese). doi: 10.3969/j.issn.1004-499X.2017.04.001
    [7]
    张小件, 刘明雍, 李洋.基于反演滑模和扩张观测器的带角度约束制导律设计[J].系统工程与电子技术, 2017, 39(6):1311-1316.

    ZHANG X J, LIU M Y, LI Y.Backstepping sliding mode control and extended state observer based guidance law design with angles[J].Systems Engineering and Electronics, 2017, 39(6):1311-1316(in Chinese).
    [8]
    WANG X, HONG Y.Finite-time consensus for multi-agent networks with second-order agent dynamics[C]//Proceedings of the IFAC World Congress.Laxenburg: IFCA, 2018: 15185-15190.
    [9]
    熊少锋, 王卫红, 王森.带攻击角度约束的非奇异快速终端滑模制导律[J].控制理论与应用, 2014, 31(3):269-278.

    XIONG S F, WANG W H, WANG S.Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J].Control Theory & Applications, 2014, 31(3):269-278(in Chinese).
    [10]
    赵斌, 周军, 卢晓东, 等.考虑终端角度约束的自适应积分滑模制导律[J].控制与决策, 2017, 32(11):1966-1972.

    ZHAO B, ZHOU J, LU X D, et al.Adaptive integral sliding mode guidance law considering impact angel constraint[J].Control and Decision, 2017, 32(11):1966-1972(in Chinese).
    [11]
    赵曜, 李璞, 刘娟, 等.带碰撞角约束的三维有限时间滑模制导律[J].北京亚洲成人在线一二三四五六区学报, 2018, 44(2):273-279.

    ZHAO Y, LI P, LIU J, et al.Finite-time sliding mode control based 3D guidance law with impact angle constraints[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2):273-279(in Chinese).
    [12]
    司玉洁, 宋申民.拦截高超声速飞行器的三维有限时间制导律设计[J].中国惯性技术学报, 2017, 25(3):405-414.

    SI Y J, SONG S M.Design of three-dimensional finite-time guidance law for intercepting hypersonic vehicle[J].Journal of Chinese Inertial Technology, 2017, 25(3):405-414(in Chinese).
    [13]
    ARIE L.Principles of 2-sliding mode design[J].Automatica, 2007, 43(4):576-586. doi: 10.1016/j.automatica.2006.10.008
    [14]
    SUN L H, WANG W H, YI R, et al.A noval guidance law using fast terminal sliding mode control with impact angle constraints[J].ISA Transactions, 2016, 64:12-23. doi: 10.1016/j.isatra.2016.05.004
    [15]
    LI P, PENG X F, MA J J, et al.Non-homogeneous disturbance observer-based second order sliding mode control for a tailless aircraft[C]//Proceedings of Chinese Automation Congress.Piscataway, NJ: IEEE Press, 2013: 120-125.
    [16]
    BHAT S P, BERNSTEIN D S.Finite-time stability of continuous autonomous systems[J].SIAM Journal on Control and Optimization, 2000, 38(3):751-766. doi: 10.1137/S0363012997321358
    [17]
    周慧波.基于有限时间和滑模理论的导引律及多导弹协同制导研究[D].哈尔滨: 哈尔滨工业大学, 2015: 41-44.

    ZHOU H B.Study on guidance law and cooperative guidance for multi-missiles based on finite-time and sliding mode theory[D].Harbin: Harbin Institute of Technology, 2015: 41-44(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(3)

    Article Metrics

    Article views(1067) PDF downloads(405) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return