Volume 45 Issue 3
Mar.  2019
Turn off MathJax
Article Contents
PANG Zhifeng, ZHANG Huili, SHI Baoliet al. Image denoising model based on directional total variation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 464-471. doi: 10.13700/j.bh.1001-5965.2018.0329(in Chinese)
Citation: PANG Zhifeng, ZHANG Huili, SHI Baoliet al. Image denoising model based on directional total variation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 464-471. doi: 10.13700/j.bh.1001-5965.2018.0329(in Chinese)

Image denoising model based on directional total variation

doi: 10.13700/j.bh.1001-5965.2018.0329
Funds:

National Basic Research Program of China 2015CB856003

National Natural Science Foundation of China 11401170

National Natural Science Foundation of China U1304610

Engineering Mathematical Modeling and Analysis, Foundation for Key Laboratory of Hunan Province Changsha University of Science and Technology

Henan University Excellent Youth Cultivation Project yqpy20170062

More Information
  • Corresponding author: PANG Zhifeng, E-mail:zhifengpang@163.com
  • Received Date: 04 Jun 2018
  • Accepted Date: 03 Sep 2018
  • Publish Date: 20 Mar 2019
  • For the problem of texture image denoising, by analyzing the advantages and disadvantages of the total variation (TV) denoising model and the directional total variation (DTV) denoising model, we propose a robust denoising model based on directional total variation. In the proposed model, in order to efficiently characterize the different structural features in the image, the exponential p in the edge adaptive directional total variation regularization term can be availably chosen in (0, 2) based on the structure in the image. Since the proposed model is a non-smooth convex optimization with separable operator, it can be solved by using the alternating direction method of multipliers (ADMM). Then the convergence of the numerical method can be efficiently kept. Compared with other classic models, numerical implementations show that the proposed model can achieve higher peak signal-to-noise ratio and structural similarity, and can effectively retain image details while removing noise.

     

  • loading
  • [1]
    CATTE F, LIONS P L, MOREL J M, et al.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal on Numerical Analysis, 1992, 29(1):182-193. doi: 10.1137/0729012
    [2]
    RUDIN L, OSHER S, FATEMI E.Nonlinear total variation based noise removal algorithms[J].Physica D:Non-linear Phenomena, 1992, 60(1-4):259-268. doi: 10.1016/0167-2789(92)90242-F
    [3]
    HOREV I, NADLER B, ARIAS-CASTRO E, et al.Detection of long edges on a computational budget:A sublinear approach[J].SIAM Journal on Imaging Science, 2015, 8(1):458-483. doi: 10.1137/140970331
    [4]
    HU Y, ONGIE G, RAMANI S, et al.Generalized higher degree total variation (HDTV) regularization[J].IEEE Transactions on Image Processing, 2014, 23(6):2423-2435. doi: 10.1109/TIP.2014.2315156
    [5]
    BREDIES K, KUNISCH K, POCK T.Total generalized variation[J].SIAM Journal on Imaging Science, 2012, 3(3):492-526.
    [6]
    COLL B, DURAN J, SBERT C.Half-linear regularization for nonconvex image restoration models[J].Inverse Problem and Imaging, 2015, 9(2):337-370. doi: 10.3934/ipi
    [7]
    BAYRAM I, KAMASAK M.Directional total variation[J].IEEE Signal Processing Letters, 2012, 19(12):781-784. doi: 10.1109/LSP.2012.2220349
    [8]
    ZHANG H, WANG Y Q.Edge adaptive directional total variation[J].The Journal of Engineering, 2013, 2013(11):61-62. doi: 10.1049/joe.2013.0116
    [9]
    BAI J, FENG X C.Fractiona-order anisotropic diffusion for image denoising[J].IEEE Transactions on Image Processing, 2007, 16(10):2492-2502. doi: 10.1109/TIP.2007.904971
    [10]
    ZHANG J P, CHEN K.A total fraction-order variation model for image restoration with non-honogeneous boundary conditions and its numerical solution[J].SIAM Journal on Imaging Science, 2015, 8(4):2487-2518. doi: 10.1137/14097121X
    [11]
    ARCHIBALD R, GELB A, PLATTE R.Image reconstruction from undersampled Fourier data using the polynomial annihilation transform[J].Journal of Scientific Computing, 2016, 67(2):432-452. doi: 10.1007/s10915-015-0088-2
    [12]
    GUO W H, QIN J, YIN W T.A new detail-preserving regularity scheme[J].SIAM Journal on Imaging Sciences, 2014, 7(2):1309-1334. doi: 10.1137/120904263
    [13]
    WANG Q, WU Z H, SUN M J, et al.Single image super-resolution using directional total variation regularization and alternating direction method of multiplier solver[J].Journal of Electronic Imaging, 2015, 24(2):023026. doi: 10.1117/1.JEI.24.2.023026
    [14]
    CHAN T F, ESEDOGLU S.Aspects of total variation regularized L1 function approximation[J].SIAM Journal on Applied Mathematics, 2005, 65(5):1817-1837. doi: 10.1137/040604297
    [15]
    CHAMBOLLE A, POCK T.A first-order primal-dual algorithm for convex problems with applications to imaging[J].Journal of Mathematical Imaging and Vision, 2011, 40(1):120-145. doi: 10.1007/s10851-010-0251-1
    [16]
    YUAN J H, YANG J, SHI D, et al.A continuation fixed-point iterative method on harmonic generations with strong nonlinear optical effects in multi-layer structures[J].Computational and Applied Mathematics, 2017, 36(1):805-824. doi: 10.1007/s40314-015-0267-7
    [17]
    ECKSTEIN J, BERTSEKAS D.On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[J].Mathematical Programming, 1992, A55(3):293-318. doi: 10.1007/BF01581204
    [18]
    XU Z B, ZENG J S, WANG Y, et al. L1/2 regularization:Convergence of iterative half thresholding algorithm[J].IEEE Transactions on Signal Processing, 2014, 69(2):2317-2329.
    [19]
    CHAN R, LIANG H X.Half-quadratic algorithm for problems with application to image restoration and compressive sensing[M]//BRUHN A, POCK T, TAI X C.Efficient algorithms for global optimization method in computer vision.Berlin: Springer, 2014: 78-103.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views(1071) PDF downloads(377) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return