| Citation: | PANG Zhifeng, ZHANG Huili, SHI Baoliet al. Image denoising model based on |
For the problem of texture image denoising, by analyzing the advantages and disadvantages of the total variation (TV) denoising model and the directional total variation (DTV) denoising model, we propose a robust denoising model based on
| [1] |
CATTE F, LIONS P L, MOREL J M, et al.Image selective smoothing and edge detection by nonlinear diffusion[J].SIAM Journal on Numerical Analysis, 1992, 29(1):182-193. doi: 10.1137/0729012
|
| [2] |
RUDIN L, OSHER S, FATEMI E.Nonlinear total variation based noise removal algorithms[J].Physica D:Non-linear Phenomena, 1992, 60(1-4):259-268. doi: 10.1016/0167-2789(92)90242-F
|
| [3] |
HOREV I, NADLER B, ARIAS-CASTRO E, et al.Detection of long edges on a computational budget:A sublinear approach[J].SIAM Journal on Imaging Science, 2015, 8(1):458-483. doi: 10.1137/140970331
|
| [4] |
HU Y, ONGIE G, RAMANI S, et al.Generalized higher degree total variation (HDTV) regularization[J].IEEE Transactions on Image Processing, 2014, 23(6):2423-2435. doi: 10.1109/TIP.2014.2315156
|
| [5] |
BREDIES K, KUNISCH K, POCK T.Total generalized variation[J].SIAM Journal on Imaging Science, 2012, 3(3):492-526.
|
| [6] |
COLL B, DURAN J, SBERT C.Half-linear regularization for nonconvex image restoration models[J].Inverse Problem and Imaging, 2015, 9(2):337-370. doi: 10.3934/ipi
|
| [7] |
BAYRAM I, KAMASAK M.Directional total variation[J].IEEE Signal Processing Letters, 2012, 19(12):781-784. doi: 10.1109/LSP.2012.2220349
|
| [8] |
ZHANG H, WANG Y Q.Edge adaptive directional total variation[J].The Journal of Engineering, 2013, 2013(11):61-62. doi: 10.1049/joe.2013.0116
|
| [9] |
BAI J, FENG X C.Fractiona-order anisotropic diffusion for image denoising[J].IEEE Transactions on Image Processing, 2007, 16(10):2492-2502. doi: 10.1109/TIP.2007.904971
|
| [10] |
ZHANG J P, CHEN K.A total fraction-order variation model for image restoration with non-honogeneous boundary conditions and its numerical solution[J].SIAM Journal on Imaging Science, 2015, 8(4):2487-2518. doi: 10.1137/14097121X
|
| [11] |
ARCHIBALD R, GELB A, PLATTE R.Image reconstruction from undersampled Fourier data using the polynomial annihilation transform[J].Journal of Scientific Computing, 2016, 67(2):432-452. doi: 10.1007/s10915-015-0088-2
|
| [12] |
GUO W H, QIN J, YIN W T.A new detail-preserving regularity scheme[J].SIAM Journal on Imaging Sciences, 2014, 7(2):1309-1334. doi: 10.1137/120904263
|
| [13] |
WANG Q, WU Z H, SUN M J, et al.Single image super-resolution using directional total variation regularization and alternating direction method of multiplier solver[J].Journal of Electronic Imaging, 2015, 24(2):023026. doi: 10.1117/1.JEI.24.2.023026
|
| [14] |
CHAN T F, ESEDOGLU S.Aspects of total variation regularized L1 function approximation[J].SIAM Journal on Applied Mathematics, 2005, 65(5):1817-1837. doi: 10.1137/040604297
|
| [15] |
CHAMBOLLE A, POCK T.A first-order primal-dual algorithm for convex problems with applications to imaging[J].Journal of Mathematical Imaging and Vision, 2011, 40(1):120-145. doi: 10.1007/s10851-010-0251-1
|
| [16] |
YUAN J H, YANG J, SHI D, et al.A continuation fixed-point iterative method on harmonic generations with strong nonlinear optical effects in multi-layer structures[J].Computational and Applied Mathematics, 2017, 36(1):805-824. doi: 10.1007/s40314-015-0267-7
|
| [17] |
ECKSTEIN J, BERTSEKAS D.On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[J].Mathematical Programming, 1992, A55(3):293-318. doi: 10.1007/BF01581204
|
| [18] |
XU Z B, ZENG J S, WANG Y, et al. L1/2 regularization:Convergence of iterative half thresholding algorithm[J].IEEE Transactions on Signal Processing, 2014, 69(2):2317-2329.
|
| [19] |
CHAN R, LIANG H X.Half-quadratic algorithm for
|