| Citation: | DING Wenzhe, LI Xinhong, YANG Honget al. Hypervelocity impact damage prediction of stuffed Whipple shield based on Adaboost[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 149-158. doi: 10.13700/j.bh.1001-5965.2018.0216(in Chinese) |
The explicit ballistic limit equation of stuffed Whipple shield may cause some deviations between the prediction results and the measured data when the projectile is subjected to hypervelocity impact damage prediction because of different filling materials and filling methods. In this regard, the machine learning method is used to transform the problem into a binary problem. The projectile impact parameters and protective structure parameters in the collision process are used as the classification features to construct a hypervelocity impact damage prediction model of stuffed Whipple shield based on Adaboost. The model uses the classification and regression tree (CART) as a weak classifier to generate a strong classifier by weighted combination of a series of weak classifiers. Through the cyclic use of training samples, the impact damage prediction under a small sample set is achieved. The experimental results show that the established Adaboost prediction model has good prediction effect on the hypervelocity impact damage of stuffed Whipple shield. Both the totality prediction rate and the safety prediction rate of Adaboost prediction model increase by 14.3% compared with NASA's ballistic limit equation, and the established model has more versatility. Cross check under different training sample sizes proves that the model has good robustness and accuracy.
| [1] |
WHIPPLE F L.Meteorites and space travel[J]. The Astronomical Journal, 1947, 52:131.
|
| [2] |
COUR-PALAIS B G, PIEKUTOWSKI A J.The multi-shock hypervelocity impact shield[M]//SCHMIDT S C, DICK R D, FORBES J W, et al.Shock compression of condensed matter-1991.Amsterdam: Elsevier, 1992: 979-982.
|
| [3] |
ROBINSON J H, HAYASHIDA K B.Double-plate penetration equations: NASA TM-2000-209907[R]. Washington, D.C.: NASA, 2000.
|
| [4] |
CHRISTIANSEN E L, CREWS J L, WILLIAMSEN J E, et al.Enhanced meteoroid and orbital debris shielding[J]. International Journal of Impact Engineering, 1995, 17(1):217-228.
|
| [5] |
RYAN S, THALER S.Artificial neural networks for characterizing Whipple shield performance[J]. Procedia Engineering, 2013, 58(56):31-38.
|
| [6] |
柳森, 李毅, 黄洁, 等.用于验证数值仿真的Whipple屏超高速撞击试验结果[J].宇航学报, 2005, 26(4):505-508. doi: 10.3321/j.issn:1000-1328.2005.04.024
LIU S, LI Y, HUANG J, et al.Hypervelocity impact test results of Whipple shield for the validation of numerical simulation[J]. Journal of Astronautics, 2005, 26(4):505-508(in Chinese). doi: 10.3321/j.issn:1000-1328.2005.04.024
|
| [7] |
管公顺.航天器空间碎片防护结构超高速撞击特性研究[D].哈尔滨: 哈尔滨工业大学, 2006.
GUAN G S.Hypervelocity impact characteristics investigation on the spacecraft space debris shield configuration[D]. Harbin: Harbin Institute of Technology, 2006(in Chinese).
|
| [8] |
张晓天, 谌颖, 贾光辉.航天器单层板结构弹道极限的支持向量机预测模型[J].宇航学报, 2014, 35(3):298-305. doi: 10.3873/j.issn.1000-1328.2014.03.008
ZHANG X T, SHEN Y, JIA G H.Support vector machine model for spacecraft single wall ballistic limit prediction[J]. Journal of Astronautics, 2014, 35(3):298-305(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.03.008
|
| [9] |
贾光辉, 欧阳智江, 蒋辉, 等.填充式防护结构弹道极限方程的多指标寻优[J].北京亚洲成人在线一二三四五六区学报, 2013, 39(12):1573-1583.
JIA G H, OUYANG Z J, JIANG H, et al.Multiple indicators optimization for stuffed Whipple shield ballistic limit equation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12):1573-1583(in Chiese).
|
| [10] |
贾光辉, 欧阳智江, 蒋辉.撞击极限方程预测指标剖析与实例[J].航空学报, 2013, 34(10):2364-2371.
JIA G H, OUYANG Z J, JIANG H.Analysis and instances of ballistic limit equations' predictive indicators[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10):2364-2371(in Chinese).
|
| [11] |
姚光乐, 贾光辉.填充式防护结构弹道极限方程形式建模[J].空间碎片研究, 2017, 17(1):29-33.
YAO G L, JIA G H.Formal modeling of ballistic limit equations for stuffed Whipple shield[J]. Space Debris Research, 2017, 17(1):29-33(in Chinese).
|
| [12] |
贾光辉, 姚光乐, 张帅.填充式防护结构弹道极限方程的差异演化优化[J].北京亚洲成人在线一二三四五六区学报, 2018, 44(7):1489-1495.
JIA G H, YAO G L, ZHANG S.Differential evolution optimization for stuffed Whipple shield ballistic limit equations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7):1489-1495(in Chinese).
|
| [13] |
哈跃.玄武岩纤维材料及其填充防护结构超高速撞击特性研究[D].哈尔滨: 哈尔滨工业大学, 2009.
HA Y.Research on hypervelocity impact properties of woven of basalt fiber material and its stuffed shielding structure[D]. Harbin: Harbin Institute of Technology, 2009(in Chinese).
|
| [14] |
张宝玺.超高速撞击玄武岩及Kevlar纤维布填充防护结构优化设计[D].哈尔滨: 哈尔滨工业大学, 2011.
ZHANG B X.Optimum design of the protection structure of basalt and Kevlar fiber cloth filled with hypervelocity impact[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
|
| [15] |
祖士明.玄武岩及Kevlar纤维填充式防护结构超高速撞击性能研究[D].哈尔滨: 哈尔滨工业大学, 2013.
ZU S M.The optimal structural design of stuffed shields whit basalt and Kevlar fiber clothes on hypervelocity impact[D]. Harbin: Harbin Institute of Technology, 2013(in Chinese).
|
| [16] |
CHRISTIANSEN E L, KERR J H.Ballistic limit equations for spacecraft shielding[J]. International Journal of Impact Engineering, 2001, 26(1-10):93-104. doi: 10.1016/S0734-743X(01)00070-7
|
| [17] |
DB]. 1989-01-01.
|
| [18] |
苏锑, 杨明, 王春香, 等.一种基于分类回归树的无人车汇流决策方法[J].自动化学报, 2018, 44(1):35-43.
SU T, YANG M, WANG C X, et al.Classification and regression tree based traffic merging for method self-driving vehicles[J]. Acta Automatica Sinica, 2018, 44(1):35-43(in Chinese).
|
| [19] |
李海生.基于证据理论的分类方法研究[D].广州: 华南理工大学, 2013.
LI H S.Research of classification method based on evidence theory[D]. Guangzhou: South China University of Technology, 2013(in Chinese).
|
| [20] |
傅翔.玄武岩纤维布/铝丝网组合材料的空间碎片防护结构研究[D].哈尔滨: 哈尔滨工业大学, 2011.
FU X.Hypervelocity impact characteristics investigation on the spacecraft space debris shield configuration of the basalt fiber woven/Al-mesh combination protective structure[D]. Harbin: Harbin Institute of Technology, 2011(in Chinese).
|
| [21] |
贾古寨.玄武岩布防护机理及其填充防护结构撞击极限分析[D].哈尔滨: 哈尔滨工业大学, 2014.
JIA G Z.Analysis on protection mechanism of basalt fabric and the limit of its stuffed shielding structure[D]. Harbin: Harbin Institute of Technology, 2014(in Chinese).
|