| Citation: | WANG Tian, XI Ping, HU Bifu, et al. A conjugated heat transfer oriented modeling method of turbine blade computational domain model[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 74-82. doi: 10.13700/j.bh.1001-5965.2018.0197(in Chinese) |
To solve the problems of low modeling efficiency, unstable model quality and poor adaptability to numerical simulation in conjugated heat transfer numerical simulation of turbine blades with complex cooling structure, the turbine blade model for manufacturing and its modeling method were analyzed. Combined with demands for numerical simulation, a conjugated heat transfer modeling method for the turbine blades' computational domain was proposed. Firstly, an automatic positioning algorithm based on the external cooling feature was used to create the turbine blade's cooling air fluid domain. Through the adaptive pipeline intersection algorithm and the boundary automatic matching algorithm, the gas fluid domain that can adapt to different blade section line types was generated. During the modeling process, the key geometric features and non-geometric information required for the numerical simulation were extracted, and then were integrated with the cooling air fluid domain, the gas fluid domain and blade entity. The conjugated heat transfer computational domain model was completed. Based on the above research, a rapid modeling system was developed for modeling conjugated heat transfer computational domain model, which verified the effectiveness of the proposed method.
| [1] |
《航空发动机设计手册》总编委会.航空发动机设计手册, 第10册:涡轮[M].北京:航空工业出版社, 2001:11.
Aero-engine Design Handbook Editorial Board.Aero engine design handbook, Volume10:Turbine[M].Beijing:Aviation Industry Press, 2001:11(in Chinese).
|
| [2] |
DOWNS J P, LANDIS K K.Turbine cooling systems design: Past, present and future[C]//ASME Turbo Expo 2009: Power for Land, Sea, and Air.New York: ASME, 2009: 819-828.
|
| [3] |
朱莉娅, 徐国强.涡轮冷却技术对航空发动机性能的影响[J].推进技术, 2014, 35(6):793-798.
ZHU L Y, XU G Q.Effect of turbine cooling technology on aeroengine performance[J].Propulsion Technology, 2014, 35(6):793-798(in Chinese).
|
| [4] |
曹玉璋.航空发动机传热学[M].北京:北京亚洲成人在线一二三四五六区出版社, 2005:57.
CAO Y Z.Aeroengine heat transfer[M].Beijng:Beihang University Press, 2005:57(in Chinese).
|
| [5] |
吴大观.航空发动机研制工作论文集[M].北京:航空工业出版社, 2009:69.
WU D G.Aerospace development work paper collection[M].Beijing:Aviation Industry Press, 2009:69(in Chinese).
|
| [6] |
王潘, 隋岩峰, 程农.涡扇发动机整机仿真平台设计及实现方法[J].系统仿真学报, 2014, 26(5):986-990.
WANG P, SUI Y F, CHENG N.Design and implementation of turbofan engine simulation patform[J].Journal of System Simulation, 2014, 26(5):986-990(in Chinese).
|
| [7] |
DEES J E, BOGARD D G, LEDEZMA G A, et al.Overall and adiabatic effectiveness values on a scaled up, simulated gas turbine vane[J].Journal of Turbomachinery-Transactions of the ASME, 2013, 135(5):595-605.
|
| [8] |
迟重然, 温风波, 王松涛, 等.涡轮动叶冷却结构设计方法Ⅲ:气热耦合计算[J].工程热物理学报, 2011, 32(9):1485-1488.
CHI Z R, WEN F B, WANG S T, et al.Turbine blade cooling structure design method Ⅲ:Conjugated heat transfer numerical simulation[J].Journal of Engineering Thermophysics, 2011, 32(9):1485-1488(in Chinese).
|
| [9] |
KUSTERER K, HAGEDORN T, BOHN D, et al.Improvement of a film-cooled blade by application of the conjugate calculation technique[J].Journal of Turbomachinery, 2006, 128(3):572-578. doi: 10.1115/1.2183314
|
| [10] |
叶莹.气冷涡轮流热耦合模拟及冷却结构优化设计[D].北京: 中国科学院大学, 2017.
YE Y.Conjugated heat transfer numerical simulation of air-cooled turbine flow and optimal design of cooling structure[D].Beijing: University of Chinese Academy of Sciences, 2017(in Chinese).
|
| [11] |
王松涛, 迟重然, 温风波, 等.涡轮动叶冷却结构设计方法Ⅰ:参数化设计[J].工程热物理学报, 2011, 32(4):581-584. http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201104012.htm
WANG S T, CHI Z R, WEN F B, et al.Turbine blade cooling structure design method Ⅰ:Parametric design[J].Journal of Engineering Thermophysics, 2011, 32(4):581-584(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-GCRB201104012.htm
|
| [12] |
虞跨海, 李立州, 岳珠峰.基于解析及特征造型的涡轮冷却叶片参数化设计[J].推进技术, 2007, 28(6):637-640. doi: 10.3321/j.issn:1001-4055.2007.06.010
YU K H, LI L Z, YUE Z F.Parametric design of turbine cooling blades based on analytic and characteristic modeling[J].Propulsion Technology, 2007, 28(6):637-640(in Chinese). doi: 10.3321/j.issn:1001-4055.2007.06.010
|
| [13] |
宋玉旺, 席平.基于特征造型技术的涡轮叶片参数化设计[J].北京亚洲成人在线一二三四五六区学报, 2004, 30(4):321-324. doi: 10.3969/j.issn.1001-5965.2004.04.009
SONG Y W, XI P.Parametric design of turbine blade based on feature modeling[J].Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(4):321-324(in Chinese). doi: 10.3969/j.issn.1001-5965.2004.04.009
|
| [14] |
李吉星, 席平.涡轮叶片导管快速建模[J].北京亚洲成人在线一二三四五六区学报, 2016, 42(6):1149-1155.
LI J X, XI P.Rapid modeling of impingement pipe in turbine blade[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6):1149-1155(in Chinese).
|
| [15] |
NOWAK G, WRÓBLEWSKI W.Optimization of blade cooling system with use of conjugate heat transfer approach[J].International Journal of Thermal Sciences, 2011, 50(9):1770-1781. doi: 10.1016/j.ijthermalsci.2011.04.001
|
| [16] |
罗磊, 卢少鹏, 迟重然, 等.气热耦合条件下涡轮动叶叶型与冷却结构优化[J].推进技术, 2014, 35(5):603-609.
LUO L, LU S P, CHI Z R, et al.Conjugate heat transfer optimization for blade profiles and cooling structure in turbine rotor[J].Advance Technology, 2014, 35(5):603-609(in Chinese).
|
| [17] |
付光辉, 席平, 张宝源, 等.涡轮气冷叶片传热分析数据提取技术研究[J].图学学报, 2015, 36(3):384-391. doi: 10.3969/j.issn.2095-302X.2015.03.010
FU G H, XI P, ZHANG B Y, et al.Data extraction technology for heat transfer analysis of air-cooled turbine blades[J].Journal of Graphics, 2015, 36(3):384-391(in Chinese). doi: 10.3969/j.issn.2095-302X.2015.03.010
|
| [18] |
席平, 王添.面向分析的产品建模技术概述[J].航空制造技术, 2017, 540(21):16-20.
XI P, WANG T.An analysis-oriented product modeling technology[J].Aeronautical Manufacturing Technology, 2017, 540(21):16-20(in Chinese).
|
| [19] |
龚勋.涡轮冷却叶片结构网格参数化方法研究[D].南京: 南京亚洲成人在线一二三四五六区, 2016.
GONG X.Research on parameterization method of turbine cooling blade structure grid[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
|
| [20] |
CHI Z R, LIU H Q, ZANG S S.Geometrical optimization of nonuniform impingement cooling structure with variable-diameter jet holes[J].International Journal of Heat & Mass Transfer, 2017, 108:549-560.
|