Volume 44 Issue 12
Dec.  2018
Turn off MathJax
Article Contents
ZHANG Yue, WANG Zhipeng, LI Qianget al. A design and evaluation strategy for GBAS reference station layout scheme[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2545-2555. doi: 10.13700/j.bh.1001-5965.2018.0080(in Chinese)
Citation: ZHANG Yue, WANG Zhipeng, LI Qianget al. A design and evaluation strategy for GBAS reference station layout scheme[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2545-2555. doi: 10.13700/j.bh.1001-5965.2018.0080(in Chinese)

A design and evaluation strategy for GBAS reference station layout scheme

doi: 10.13700/j.bh.1001-5965.2018.0080
Funds:

National Natural Science Foundation of China 61501010

National Natural Science Foundation of China U1433114

National Natural Science Foundation of China 61501014

National Natural Science Foundation of China 61521091

Aeronautical Science Foundation of China 2015ZC51035

More Information
  • Corresponding author: WANG Zhipeng, E-mail: wangzhipeng@cqjj8.com
  • Received Date: 08 Feb 2018
  • Accepted Date: 23 Aug 2018
  • Publish Date: 20 Dec 2018
  • The layout of ground-based augmentation system (GBAS) reference stations will directly impact the accuracy and integrity performance of GBAS, and it is closely related to the airport conditions, the satellite constellations used and the local ionospheric environment. However, the published documents such as Federal Aviation Administration (FAA) GBAS siting order only give basic requirements of reference station layout and do not deeply take the impact of the above points into account. Therefore, the study on design and evaluation strategy for GBAS reference station layout is very important. By comparing the different GBAS reference station layouts and the broadcast pseudorange correction error standard deviations of five airports based on collected data, analyzing the impact of the number of reference stations on the GBAS protection levels, and studying the impact of baseline length on the performance of ephemeris fault monitor and anomalous ionospheric gradient monitor, a design and evaluation strategy for GBAS reference station layout is proposed, which is supplemented by four sample schemes for Ⅴ-shape runways. The proposed strategy can provide a reference for the design and determination of appropriate layouts based on specific airport conditions and the requirements of ephemeris fault monitor and anomalous ionospheric gradient monitor.

     

  • loading
  • [1]
    International GBAS Working Group (IGWG).GBAS approach & landing systems, the future of precision approach[EB/OL].(2017-04-20)[2018-01-10].
    [2]
    ICAO NSP.Report of the meeting of the GBAS WG (GWG): NSP3 Agenda 1[R].Montreal: ICAO, 2016.
    [3]
    GRATTON L R.Orbit ephemeris monitors for category Ⅰ local area augmentation of GPS[D].Chicago: Illinois Institute of Technology, 2003.
    [4]
    ICAO NSP/4-WP/18.Proposed change to ICAO DOC 9157 Part 6 to facilitate GBAS ground subsystem siting: NSP4 Agenda 3[R].Montreal: ICAO, 2017.
    [5]
    FAA.Siting criteria for ground based augmentation system (GBAS): 6884.1[S].Washington, D.C.: FAA, 2010.
    [6]
    SESAR.Ground architecture and airport installation: D0403.00.00[R].Ragusa: SESAR, 2013.
    [7]
    FAA.Ground based augmentation system performance analysis and activities report: Quarter 1-2016[R].Washington, D.C.: FAA, 2016.
    [8]
    DAUTERMANN T, FELUX M, GROSCH A.Approach service type D evaluation of the DLR GBAS testbed[J].GPS Solutions, 2012, 16(3):375-387. doi: 10.1007/s10291-011-0239-3
    [9]
    RTCA.Minimum operational performance standards for GPS local area augmentation system airborne equipment: DO-253C[S].Washington, D.C.: RTCA, 2008.
    [10]
    RTCA.Minimum aviation system performance standards for the local area augmentation system(LAAS): DO-245A[S].Washington, D.C.: RTCA, 2004.
    [11]
    WANG Z, MACABIAU C, ZHANG J, et al.Prediction and analysis of GBAS integrity monitoring availability at LinZhi airport[J].GPS Solutions, 2014, 18(1):27-40. doi: 10.1007/s10291-012-0306-4
    [12]
    RTCA.GNSS-based precision approach local area augmentation system (LAAS) signal-in-space interface control document (ICD): DO-246D[S].Washington, D.C.: RTCA, 2008.
    [13]
    PERVAN B, GRATTON L.Orbit ephemeris monitors for local area differential GPS[J].IEEE Transactions on Aerospace & Electronic Systems, 2005, 41(2):449-460.
    [14]
    ICAO NSP.Preliminary review of proposed amendments to Annex 10, Volume Ⅰ: Item No.20403[R].Montreal: ICAO, 2017.
    [15]
    AHN J, LEE Y J, WON D H, et al.Orbit ephemeris failure detection in a GNSS regional application[J].International Journal of Aeronautical & Space Sciences, 2015, 16(1):89-101.
    [16]
    KHANAFSEH S, PULLEN S, WARBURTON J.Carrier phase ionospheric gradient ground monitor for GBAS with experimental validation[J].Navigation, 2012, 59(1):51-60. doi: 10.1002/navi.v59.1
    [17]
    SHIVELY C A.Preliminary analysis of requirements for CAT ⅢB LAAS[C]//Proceedings of Annual Meeting of the Institute of Navigation.Albuquerque, NM: ION, 2001: 705-714.
    [18]
    PULLEN S, PARK Y S, ENGE P.Impact and mitigation of ionospheric anomalies on ground-based augmentation of GNSS[J].Radio Science, 2016, 44(1):1-10.
    [19]
    LUO M, PULLEN S, WALTER T, et al.Ionosphere spatial gradient threat for LAAS: Mitigation and tolerable threat space[C]//Proceedings of the National Technical Meeting of the Institute of Navigation.San Diego, CA: ION, 2004: 490-501.
    [20]
    ICAO NSP.GAST D siting issues paper: WP/34 Agenda 1[R].Montreal: ICAO, 2010.
    [21]
    HARRIS M, MURPHY T, SAITO S.Further validation of GAST D ionospheric anomaly mitigations[C]//Proceedings of the International Technical Meeting of the Institute of Navigation.Manassas, VA: ION, 2011, 8034(6): 942-949.
    [22]
    DATTA-BARUA S, LEE J, PULLEN S, et al.Ionospheric threat parameterization for local area GPS-based aircraft landing systems[J].Journal of Aircraft, 2010, 47(7):1141-1151. doi: 10.2514/1.46719
    [23]
    KIM M, CHOI Y, JUN H S, et al.GBAS ionospheric threat model assessment for category Ⅰ operation in the Korean region[J].GPS Solutions, 2015, 19(3):443-456. doi: 10.1007/s10291-014-0404-6
    [24]
    ICAO NSP/3.GBAS MC/DF verification exercises preliminary results: IP/14 Agenda 3[R].Montreal: ICAO, 2016.
    [25]
    ICAO NSP/3.Assessment of GNSS repeater impact on GBAS: WP/17 Agenda 3[R].Montreal: ICAO, 2016.
    [26]
    BELABBAS B, REMI P, MEURER M, et al.Absolute slant ionosphere gradient monitor for GAST-D: Issues and opportunities[C]//Proceedings of the International Technical Meeting of The Satellite Division of the Institute of Navigation.Manassas, VA: ION, 2011: 2993-3002.
    [27]
    WANG Z, WANG S, ZHU Y, et al.Assessment of ionospheric gradient impacts on ground-based augmentation system (GBAS) data in Guangdong province, China[J].Sensors, 2017, 17(10):2313. doi: 10.3390/s17102313
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views(1067) PDF downloads(421) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return