Volume 44 Issue 6
Jun.  2018
Turn off MathJax
Article Contents
QIU Lifang, CHEN Haixiang, WU Youweiet al. Topological structure design and compliance analysis of a new single-axis flexure hinge[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1133-1140. doi: 10.13700/j.bh.1001-5965.2017.0388(in Chinese)
Citation: QIU Lifang, CHEN Haixiang, WU Youweiet al. Topological structure design and compliance analysis of a new single-axis flexure hinge[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1133-1140. doi: 10.13700/j.bh.1001-5965.2017.0388(in Chinese)

Topological structure design and compliance analysis of a new single-axis flexure hinge

doi: 10.13700/j.bh.1001-5965.2017.0388
Funds:

National Natural Science Foundation of China 51475037

More Information
  • Corresponding author: QIU Lifang, E-mail:qlf@ustb.edu.cn
  • Received Date: 07 Jun 2017
  • Accepted Date: 16 Oct 2017
  • Publish Date: 20 Jun 2018
  • Based on three-dimensional continuum topology optimization theory, aimed at maximizing compliance ratio, solid isotropic material with penalization model was used to establish the topology optimization model of a single-axis flexure hinge. With the help of OptiStruct, this paper designed a kind of single-axis flexure hinge with a new three-dimensional topological structure. Secondly, combining Castigliano's second theorem and the method of energy for the compliance of flexure hinge in theory, it deduced the compliance matrix of the new flexure hinge. 16 groups' analysis in theory and finite element simulation analysis showed the correctness of the theoretical formula because the relative error of analysis and FEA was within 6.35%. Finally, it compared the difference of compliance between the new flexure hinge and circular flexure hinge with the same cut profile. The results show that the new flexure hinge has much better performance in compliance. Compared with the circular flexure hinge, its compliance can be improved by 300%. Based on the three-dimensional continuum topology optimization method, this paper presented a new thought for the design of single-axis flexure hinge.

     

  • loading
  • [1]
    于靖军, 郝广波, 陈贵敏, 等.柔性机构及其应用研究进展[J].机械工程学报, 2015, 51(13):53-68. http://www.cnki.com.cn/Article/CJFDTotal-JXXB201513006.htm

    YU J J, HAO G B, CHEN G M, et al.State-of-art of compliant mechanisms and their applications[J].Chinese Journal of Mechanical Engineering, 2015, 51(13):53-68(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JXXB201513006.htm
    [2]
    余跃庆, 李清清.Y型柔性铰链的设计与实验[J].光学精密工程, 2017, 25(2):394-400.

    YU Y Q, LI Q Q.Design and experiment of Y-type flexure hinge[J].Optics and Precision Engineering, 2017, 25(2):394-400(in Chinese).
    [3]
    陈贵敏, 贾建援, 刘小院, 等.柔性铰链精度特性研究[J].仪器仪表学报, 2004, 25(4):107-109. http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2004S2035.htm

    CHEN G M, JIA J Y, LIU X Y, et al.Study on the accuracy of flexible hinges[J].Chinese Journal of Scientific Instrument, 2004, 25(4):107-109(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-YQXB2004S2035.htm
    [4]
    LOBONTIU N, GARCIA E.Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms[J].Computers and Structures, 2003, 81(32):2797-2810. doi: 10.1016/j.compstruc.2003.07.003
    [5]
    SMITH S T, BADAMI V G, Dale J S, et al.Elliptical flexure hinges[J].Review of Scientific Instruments, 1997, 68(3):1474-1483. doi: 10.1063/1.1147635
    [6]
    CHEN G M, LIU X Y, GAO H W, et al.A generalized model for conic flexure hinges[J].Review of Scientific Instruments, 2009, 80(5):106-116. doi: 10.1063/1.3137074
    [7]
    邱丽芳, 南铁玲, 柳林.微柔性铰链转动能力和精度特性研究[J].微纳电子技术, 2007, 44(12):1068-1072. doi: 10.3969/j.issn.1671-4776.2007.12.008

    QIU L F, NAN T L, LIU L.Study on the rotation capacity and the precision of micro flexible hinges[J].Micronanoelectronic Technology, 2007, 44(12):1068-1072(in Chinese). doi: 10.3969/j.issn.1671-4776.2007.12.008
    [8]
    卢倩, 黄卫清, 王寅, 等.深切口椭圆柔性铰链优化设计[J].光学精密工程, 2015, 23(1):206-215.

    LU Q, HUANG W Q, WANG Y, et al.Optimization design of deep-notch elliptical flexure hinges[J].Optics and Precision Engineering, 2015, 23(1):206-215(in Chinese).
    [9]
    卢倩, 黄卫清, 孙梦馨.基于柔度比优化设计杠杆式柔性铰链放大机构[J].光学精密工程, 2016, 24(1):102-111.

    LU Q, HUANG W Q, SUN M X.Optimization design of amplification mechanism for level flexure hinge based on compliance ratio[J].Optics and Precision Engineering, 2016, 24(1):102-111(in Chinese).
    [10]
    于靖军, 裴旭, 毕树生, 等.柔性铰链机构设计方法的研究进展[J].机械工程学报, 2010, 45(13):2-13.

    YU J J, PEI X, BI S S, et al.State-of-arts of design method for flexure mechanisms[J].Journal of Mechanical Engineering, 2010, 45(13):2-13(in Chinese).
    [11]
    ZHU B L, ZHANG X M, FATIKOW S.Design of single-flexure hinges using continuum topology optimization method[J].Science China:Technological Sciences, 2014, 57(3):560-567. doi: 10.1007/s11431-013-5446-4
    [12]
    LIU M, ZHANG X M, FATIKOW S.Design and analysis of a high-accuracy flexure hinge[J].Review of Scientific Instruments, 2016, 87(5):055106. doi: 10.1063/1.4948924
    [13]
    刘敏, 张宪民.基于类V型柔性铰链的微位移放大机构[J].光学精密工程, 2017, 25(4):467-476.

    LIU M, ZHANG X M.Mico-displacement amplifier based on quasi-V-shaped flexure hinge[J].Optics and Precision Engineering, 2017, 25(4):467-476(in Chinese).
    [14]
    LIU M, ZHANG X M, FATIKOW S.Design and analysis of a multi-notched flexure hinge for compliant mechanisms[J].Precision Engineering, 2017, 48:292-304. doi: 10.1016/j.precisioneng.2016.12.012
    [15]
    PAROS J M, WEISBORO L.How to design flexure hinges[J].Machine Design, 1965, 37(27):151-156. doi: 10.1007%2Fs00170-009-2478-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(1249) PDF downloads(427) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return