| Citation: | ZHANG Jinyang, ZHANG Jianguo, PENG Wensheng, et al. Dynamic accuracy uncertainty analysis of harmonic reducer based on PCE[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1056-1065. doi: 10.13700/j.bh.1001-5965.2017.0305(in Chinese) |
The dynamic accuracy of the harmonic reducer is related to the parts' tolerance and assembly clearance as well as the flexibility and friction of the harmonic reducer. Most of the published literatures consider only a single factor and do not take into account the influence of model parameter uncertainty. In this paper, the dynamic accuracy is researched considering static factors (machining and assembly) and dynamic characteristics (flexibility and friction). The nonlinear dynamic model is established, which contains static error and flexibility term. Polynomial chaos expansion (PCE) is used to handle the parameter sensitivity and uncertainty. By comparison, PCE is more efficient than Monte Carlo. Dynamic accuracy reliability is finally obtained through reliability analysis based on dynamic accuracy PCE.
| [1] |
NYE T, KRAML R. Harmonic drive gear error: Characterization and compensation for precision pointing and tracking[C]//Processing of the 25th Aerospace Mechanics, Symposium. Washington, D. C. : NASA, 1991: 237-252.
|
| [2] |
EMELYANOV A F.Calculation of the kinematic error of a harmonic gear transmission taking into account the compliance of elements[J].Soviet Engineering Research, 1983, 3(7):7-10.
|
| [3] |
GRAVAGNO F, MUCINO V H, PENNESSTRI E.Influence of wave generator profile on pure kinematic error and centrodes of harmonic drive[J].Mechanism and Machine Theory, 2016, 104:100-107. doi: 10.1016/j.mechmachtheory.2016.05.005
|
| [4] |
沙晓晨, 范元勋.谐波减速器传动误差的研究[J].机械制造, 2015, 44(5):50-54. http://www.cnki.com.cn/Article/CJFDTotal-ZZHD201505013.htm
SHA X C, FAN Y X.Study of transmission error of harmonic drive reducer[J].Machine Building Automation, 2015, 44(5):50-54(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-ZZHD201505013.htm
|
| [5] |
HSIA L M. The analysis and design of harmonic gear drives[C]//Processing of the 1988 IEEE International Conference on Systems, Man, and Cybernetics. Piscataway, NJ: IEEE Press, 1988: 616-620.
|
| [6] |
TUTTLE T, SEERING W. Kinematic error, compliance, and friction in a harmonic drive gear transmission[C]//ASME Design Technical Conferences 19th Design Automation. New York: ASME, 1993: 319-324.
|
| [7] |
游斌弟, 赵阳.考虑非线性因素的谐波齿轮传动动态误差研究[J].宇航学报, 2010, 31(5):1297-1282.
YOU B D, ZHAO Y.Study on dynamic error of harmonic drive with nonlinear factors[J].Journal of Astronautics, 2010, 31(5):1297-1282(in Chinese).
|
| [8] |
PREISSNER C, ROYSTON T J, SHU D.A high-fidelity harmonic drive model[J].Journal of Dynamic Systems, Measurement, and Control, 2012, 134(1):011002. doi: 10.1115/1.4005041
|
| [9] |
KIRCANSKI N, GOLDENBERG A, ANGELS J. Nonlinear modeling and parameter identification of harmonic drive gear transmissions[C]//Processing of the 32nd IEEE Conference on Robotics and Automatic. Piscataway, NJ: IEEE Press, 1995: 3027-3032.
|
| [10] |
王爱东. 机器人用谐波齿轮传动装置的运动精度分析[D]. 北京: 中国科学院, 2001: 11-15.
WANG A D. Kinematic accuracy analysis of gear transmission for harmonic reducer of robot[D]. Beijing: Chinese Academy of Sciences, 2001: 11-15(in Chinese).
|
| [11] |
FATHI H, PRASANNA S, FRIEDHELM A.On the kinematic error in harmonic drive gears[J].Journal of Mechanical Design, 2001, 123(1):90-97. doi: 10.1115/1.1334379
|
| [12] |
WIENER N.The homogeneous chaos[J].American Journal of Mathematics, 1938, 60(4):897-936. doi: 10.2307/2371268
|
| [13] |
赵珂, 高正红, 黄江涛, 等.基于PCE方法的翼型不确定性分析及稳健设计[J].力学学报, 2014, 46(1):11-19.
ZHAO K, GAO Z H, HUANG J T, et al.Uncertainty quantification and robust design of airfoil based on polynomial chaos technique[J].Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(1):11-19(in Chinese).
|
| [14] |
LOEVETT T, PONCI F, MONTI A.A polynomial chaos approach to measurement uncertainty[J].IEEE Transations on Instrumentation and Measurement, 2006, 55(3):729-736. doi: 10.1109/TIM.2006.873807
|
| [15] |
BENJAMIN L, HOSAM K, JEFFREY L.Recursive maximum likelihood parameter estimation for state space systems using polynomial chaos theory[J].Automatica, 2011, 47(11):2420-2424. doi: 10.1016/j.automatica.2011.08.014
|
| [16] |
陶海川, 来新民.基于Dymola的无刷直流电机仿真模型[J].计算机仿真, 2005, 22(5):63-65. doi: 10.3969/j.issn.1006-9348.2005.05.018
TAO H C, LAI X M. Computer simulation of brushless DC motor system based on Dymola[J].Computer Simulation, 2005, 22 (5):63-65(in Chinese). doi: 10.3969/j.issn.1006-9348.2005.05.018
|
| [17] |
SUDRET B.Global sensitivity analysis using polynomial chaos expansion[J].Reliability Engineering and System Safety, 2008, 93(7):964-979. doi: 10.1016/j.ress.2007.04.002
|
| [18] |
PENG W S, ZHANG J G, ZHU D T.ABCLS methods for high-reliability aerospace mechanism with truncated random uncertainties[J].Chinese Journal of Aeronautics, 2015, 28(4):1066-1075. doi: 10.1016/j.cja.2015.06.012
|