| Citation: | LI Yansu, YAN Chao, YU Jianet al. Compact shock capturing scheme for compressible multiscale flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(8): 1602-1609. doi: 10.13700/j.bh.1001-5965.2016.0623(in Chinese) |
Aimed at compressible multiscale flow simulations, a fifth-order high-resolution compact shock capturing scheme, compact-reconstruction weighted essentially non-oscillatory (CRWENO), is studied. Nonlinear weights are used to combine lower-order compact schemes to approximate a higher-order compact scheme. The scheme becomes the fifth-order linear compact scheme in smooth regions, while preserves computational stability across discontinuities. Numerical properties were analyzed for CRWENO and weighted essentially non-oscillatory (WENO) which is widely used these days, as well as the linear schemes that they correspond to, i.e. the fifth-order upwind linear scheme and the fifth-order compact scheme. The impacts of nonlinear weights on dissipation and spectral properties are evaluated. The advancements and drawbacks of linear/nonlinear and compact/explicit schemes in compressible multiscale flow simulations are discussed by performing 1D, 2D and 3D typical numerical tests. It can be concluded that CRWENO scheme can obtain non-oscillatory results near strong discontinuous regions. Its compact characteristic improves the problems of over-dissipation and low resolution exiting in nonlinear schemes and makes it clearly resolve multiscale flow structures. In a word, CRWENO is a proper candidate for compressible multiscale flow simulations.
| [1] |
屈峰, 阎超, 于剑, 等.高精度激波捕捉格式的性能分析[J].北京亚洲成人在线一二三四五六区学报, 2014, 40(8):1085-1089.
QU F, YAN C, YU J, et al.Assessment of shock capturing methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Beingjing University of Aeronautics and Astronautics, 2014, 40(8):1085-1089(in Chinese).
|
| [2] |
LELE S K.Compact finite difference schemes with spectral-like resolution[J].Journal of Computational Physics, 1992, 103(1):16-42. doi: 10.1016/0021-9991(92)90324-R
|
| [3] |
VAN LEER B.Towards the ultimate conservation difference scheme Ⅴ:A second-order sequal to Godunov's method[J].Journal of Computational Physics, 1979, 32(1):101-136. doi: 10.1016/0021-9991(79)90145-1
|
| [4] |
HARTEN A.High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics, 1983, 49(3):357-393. doi: 10.1016/0021-9991(83)90136-5
|
| [5] |
JIANG G S, SHU C W.Efficient Implementation of weighted ENO schemes[J].Journal of Computational Physics, 1996, 126(1):202-228. doi: 10.1006/jcph.1996.0130
|
| [6] |
GEROLYMOS G A, SÉNÉCHAL D, VALLET I.Very-high-order WENO schemes[J].Journal of Computational Physics, 2009, 228(23):8481-8524. doi: 10.1016/j.jcp.2009.07.039
|
| [7] |
MARTIN M P, TAYLOR E M, WU M, et al.A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J].Journal of Computational Physics, 2006, 220(1):270-289. doi: 10.1016/j.jcp.2006.05.009
|
| [8] |
HENRICK A K, ASLAM T D, POWERS J M.Mapped weighted essentially non-oscillatory schemes:Achieving optimal order near critical points[J].Journal of Computational Physics, 2005, 207(2):542-567. doi: 10.1016/j.jcp.2005.01.023
|
| [9] |
ACKER F, BORGES R B D R, COSTA B.An improved WENO-Z scheme[J].Journal of Computational Physics, 2016, 313:726-753. doi: 10.1016/j.jcp.2016.01.038
|
| [10] |
GHOSH D, BAEDER J.Compact reconstruction schemes with weighted ENO limiting for hyperbolic conservation laws[J].SIAM Journal on Scientific Computing, 2012, 34(3):A1678-A1706. doi: 10.1137/110857659
|
| [11] |
GHOSH D, MEDIDA S, BAEDER J D.Application of compact-reconstruction weighted essentially nonoscillatory schemes to compressible aerodynamic flows[J].AIAA Journal, 2014, 52(9):1858-1870. doi: 10.2514/1.J052654
|
| [12] |
GHOSH D, CONSTANTINESCU E M, BROWN J.Efficient implementation of nonlinear compact schemes on massively parallel platforms[J].SIAM Journal on Scientific Computing, 2015, 37(3):C354-C383. doi: 10.1137/140989261
|
| [13] |
PENG J, SHEN Y.Improvement of weighted compact scheme with multi-step strategy for supersonic compressible flow[J].Computers & Fluids, 2015, 115:243-255.
|
| [14] |
ROE P L.Approximate Riemann solvers, parameter vectors and difference schemes[J].Journal of Computational Physics, 1981, 43(2):357-372. doi: 10.1016/0021-9991(81)90128-5
|
| [15] |
GOTTLIEB S, SHU C.Total variation diminishing Runge-Kutta schemes[J].Mathematics of computation of the American Mathematical Society, 1998, 67(221):73-85. doi: 10.1090/mcom/1998-67-221
|
| [16] |
傅德薰, 马延文, 李新亮, 等.可压缩湍流直接数值模拟[M].北京:科学出版社, 2010:34-36.
FU D X, MA Y W, LI X L, et al.Direct numerical simulation of the compressible turbulences[M].Beijing:Science Press, 2010:34-36(in Chinese).
|
| [17] |
FAUCONNIER D, DICK E.On the spectral and conservation properties of nonlinear discretization operators[J].Journal of Computational Physics, 2011, 230(12):4488-4518. doi: 10.1016/j.jcp.2011.02.025
|
| [18] |
SOD G A.A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws[J].Journal of Computational Physics, 1978, 27(1):1-31. doi: 10.1016/0021-9991(78)90023-2
|
| [19] |
WOODWARD P, COLELLA P.The numerical simulation of two-dimensional fluid flow with strong shocks[J].Journal of Computational Physics, 1984, 54(1):115-173. doi: 10.1016/0021-9991(84)90142-6
|
| [20] |
DEBONIS J R.Solutions of the Taylor-Green vortex problem using high resolution explicit finite difference methods:AIAA-2013-0382[R].Reston:AIAA, 2013.
|
| [21] |
BULL J R, JAMESON A.Simulation of the compressible Taylor-Green vortex using high-order flux reconstruction schemes[J].AIAA Journal, 2015, 53(9):2750-2761. doi: 10.2514/1.J053766
|
| [22] |
DE WIART C C, HILLEWAERT K, DUPONCHEEL M, et al.Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number[J].International Journal for Numerical Methods in Fluids, 2014, 74(7):469-493. doi: 10.1002/fld.v74.7
|
| [23] |
SAMTANEY R, PULLIN D I, KOSOVIC B.Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J].Physics of Fluids, 2001, 13(5):1415-1430. doi: 10.1063/1.1355682
|