Volume 43 Issue 6
Jun.  2017
Turn off MathJax
Article Contents
YUN Wanying, LYU Zhenzhou, JIANG Xian, et al. An efficient method for reliability global sensitivity index by space-partition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1199-1207. doi: 10.13700/j.bh.1001-5965.2016.0479(in Chinese)
Citation: YUN Wanying, LYU Zhenzhou, JIANG Xian, et al. An efficient method for reliability global sensitivity index by space-partition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(6): 1199-1207. doi: 10.13700/j.bh.1001-5965.2016.0479(in Chinese)

An efficient method for reliability global sensitivity index by space-partition

doi: 10.13700/j.bh.1001-5965.2016.0479
Funds:

Natural Science Foundation of China 51475370

the Fundamental Research Funds for the Central Universities 3102015BJ (Ⅱ) CG009

Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University CX201708

More Information
  • Corresponding author: LYU Zhenzhou, E-mail:zhenzhoulu@nwpu.edu.cn
  • Received Date: 04 Jun 2016
  • Accepted Date: 07 Jul 2016
  • Publish Date: 20 Jun 2017
  • The reliability sensitivity index well analyzes how the failure probability of a model is affected by the different sources of uncertainty in the model inputs. In order to improve the efficiency of digital simulation in estimating this index, a method was proposed based on the weighted density, the law of total variance in the successive intervals without overlapping and the space partition. To accelerate the speed of convergence, the law of total variance in the successive intervals without overlapping was proved and used subsequently. The weighted density method generates uniform samples in the possible interval of model inputs, and it can ensure the equivalence of estimation by the weighted density indices. The proposed method can avoid searching the design point; therefore, for the highly nonlinear problem which is difficult to find the design point and the problem of multiple design points, the proposed method can well deal with. In addition, by the idea of space-partition, the dependence of the computational cost on the input dimensionality is removed, and the proposed method only requires one set of input-output samples to obtain all the sensitivity indices, which greatly improves the utilization of samples and computational efficiency. Examples illustrate that the proposed method has higher efficiency, accuracy, convergence and robustness than the existing methods for the problems of high nonlinearity and multiple design points.

     

  • loading
  • [1]
    SALTELLI A. Sensitivity analysis for importance assessment[J].Risk Analysis, 2002, 22(3):579-590. doi: 10.1111/risk.2002.22.issue-3
    [2]
    BORGONOVO E, APOSTOLAKIS G E.A new importance measure for risk-informed decision-making[J].Reliability Engineering and System Safety, 2001, 72(2):193-212. doi: 10.1016/S0951-8320(00)00108-3
    [3]
    BORGONOVO E, APOSTOLAKIS G E, TARANTOLA S, et al.Comparison of local and global sensitivity analysis techniques in probability safety assessment[J].Reliability Engineering and System Safety, 2003, 79(2):175-185. doi: 10.1016/S0951-8320(02)00228-4
    [4]
    TARANTOLA S, KOPUSTINSKAS V, BOLADO-LAVIN R, et al.Sensitivity analysis using contribution to sample variance plot:Application to a water hammer model[J].Reliability Engineering and System Safety, 2012, 99(2):62-73.
    [5]
    WEI P F, LU Z Z, RUAN W B, et al.Regional sensitivity analysis using revised mean and variance ratio functions[J].Reliability Engineering and System Safety, 2014, 121(1):121-135.
    [6]
    SALTELLI A, RATTO M, ANDRES T, et al.Global sensitivity analysis[M].New York:John Wiley & Sons, 2008:115-174.
    [7]
    SALTELLI A, MARIVOET J.Non-parametric statistics in sensitivity analysis for model output:A comparison of selected techniques[J].Reliability Engineering and System Safety, 1990, 28(2):229-253. doi: 10.1016/0951-8320(90)90065-U
    [8]
    ZHANG X F, PANDEY M D.An effective approximation for variance-based global sensitivity analysis[J].Reliability Engineering and System Safety, 2014, 121(4):164-174.
    [9]
    WEI P, LU Z Z, SONG J W.A new variance-based global sensitivity analysis technique[J].Computation Physics Communication, 2013, 184(11):2540-2551. doi: 10.1016/j.cpc.2013.07.006
    [10]
    DEMAN G, KONAKLI K, SUDRET B, et al.Using sparse polynomial chaos expansions for the global sensitivity analysis of groundwater lifetime expectancy in multi-layered hydrogeological model[J].Reliability Engineering and System Safety, 2016, 147:156-169. doi: 10.1016/j.ress.2015.11.005
    [11]
    PIANOSI F, WAGENER T.A simple and efficient method for global sensitivity analysis based on cumulative distribution functions[J].Environmental Modelling & Software, 2015, 67:1-11.
    [12]
    BORGONOVO E.A new uncertainty importance measure[J].Reliability Engineering and System Safety, 2007, 92(6):771-784. doi: 10.1016/j.ress.2006.04.015
    [13]
    LIU Q, HOMMA T.A new importance measure for sensitivity analysis[J].Journal of Nuclear Science and Technology, 2010, 47(1):53-61. doi: 10.1080/18811248.2010.9711927
    [14]
    CUI L J, LU Z Z, ZHAO X P.Moment-independent importance measure of basic random variable and its probability density evolution solution[J].Science China Technological Sciences, 2010, 53(4):1138-1145. doi: 10.1007/s11431-009-0386-8
    [15]
    LI L Y, LU Z Z, FENG J, et al.Moment-independent importance measure of basic variable and its state dependent parameter solution[J].Structural Safety, 2012, 38:40-47. doi: 10.1016/j.strusafe.2012.04.001
    [16]
    张磊刚, 吕震宙, 陈军.基于失效概率的矩独立重要性测度的高效算法[J].航空学报, 2014, 35(8):2199-2206. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201408013.htm

    ZHANG L G, LYU Z Z, CHEN J.An efficient method of failure probability-based moment-independent importance measure[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(8):2199-2206(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201408013.htm
    [17]
    WEI P F, LU Z Z, HAO W R, et al.Efficient sampling methods for global reliability sensitivity analysis[J].Computation Physics Communication, 2012, 183(8):1728-1743. doi: 10.1016/j.cpc.2012.03.014
    [18]
    DITLEVSEN O, MADSEN H O.Structural reliability methods[M].Chichester:Wiley, 1996:102-109.
    [19]
    RASHKI M, MIRI M, MOGHADDAM M A.A new efficient simulation method to approximate the probability of failure and most probability point[J].Structural Safety, 2012, 39(4):22-29.
    [20]
    ZHAI Q Q, YANG J, ZHAO Y.Space-partition method for the variance-based sensitivity analysis:Optimal partition scheme and comparative study[J].Reliability Engineering and System Safety, 2014, 131:66-82. doi: 10.1016/j.ress.2014.06.013
    [21]
    吕召燕, 吕震宙, 李贵杰, 等.基于密度权重的可靠性灵敏度分析方法[J].航空学报, 2014, 35(1):179-186. http://www.cnki.com.cn/Article/CJFDTOTAL-ZJKN201701002.htm

    LV Z Y, LV Z Z, LI G J, et al.Reliability sensitivity analysis method based on weight index of density[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(1):179-186(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZJKN201701002.htm
    [22]
    SOBOL I M.Uniformly distributed sequences with additional uniformity properties[J].USSR Computational Mathematics and Mathematical Physics, 1976, 16(5):236-242. doi: 10.1016/0041-5553(76)90154-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(5)

    Article Metrics

    Article views(1197) PDF downloads(445) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return