Volume 43 Issue 4
Apr.  2017
Turn off MathJax
Article Contents
ZHAO Yatian, YAN Chao, SUN Di, et al. Performance analysis of a new-type third-order TVD limiter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 800-805. doi: 10.13700/j.bh.1001-5965.2016.0266(in Chinese)
Citation: ZHAO Yatian, YAN Chao, SUN Di, et al. Performance analysis of a new-type third-order TVD limiter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 800-805. doi: 10.13700/j.bh.1001-5965.2016.0266(in Chinese)

Performance analysis of a new-type third-order TVD limiter

doi: 10.13700/j.bh.1001-5965.2016.0266
Funds:

National Natural Science Foundation of China 11402016

More Information
  • Corresponding author: YAN Chao, E-mail: yanchao@cqjj8.com
  • Received Date: 06 Apr 2016
  • Accepted Date: 22 Jul 2016
  • Publish Date: 20 Apr 2017
  • For numerical scheme in computational fluid dynamics (CFD), limiter technology is an important factor affecting computational accuracy and stability. Although the present classical second-order total variation diminishing (TVD) limiters with a wide application can well satisfy the computing requirements, its performance not only largely differs but also cannot be properly weighted between resolution and dissipation. Therefore, a new third-order TVD interpolation limiter (T-3 limiter) has been studied and compared with three classical limiters. First, through one-dimensional Riemann problem, it has been found that T-3 limiter is simultaneously characterized by both high intermittent resolution and excellent stability; then, by numerical simulation of hypersonic flow over a double-cone body and X-33 configuration, it has been found that T-3 limiter boasts the capability of portraying complex flow and good aerothermodynamic calculation performance.

     

  • loading
  • [1]
    HARTEN A.High resolution schemes for hyperbolic conservation laws[J].Journal of Computational Physics, 1983, 49(3):357-393. doi: 10.1016/0021-9991(83)90136-5
    [2]
    LEER B V.Towards the ultimate conservative difference scheme V:A second-order sequal to Godunov's method[J].Journal of Computational Physics, 1979, 32(1):101-136. doi: 10.1016/0021-9991(79)90145-1
    [3]
    HARTEN A, ENGQUIST B, OSHER S, et al.Unifomrly high-order accurate essentially non-oscillatory schemes[J].Journal of Computational Physics, 1987, 71(2):231-303. doi: 10.1016/0021-9991(87)90031-3
    [4]
    LIU X D, OSHER S, TONY C.Weighted essentially non-oscillatory schemes[J].Journal of Computational Physics, 1994, 115(1):200-212. doi: 10.1006/jcph.1994.1187
    [5]
    SWEBY P K.High resolution schemes using flux limiters for hyperbolic conservational laws[J].SIAM Journal of Numerical Analysis, 1984, 21(5):995-1011. doi: 10.1137/0721062
    [6]
    VENKATAKRISHMAN V.Convergence to steady state solutions of the Euler equations on unstructured grids with limiters[J].Journal of Computational Physics, 1995, 118(1):120-130. doi: 10.1006/jcph.1995.1084
    [7]
    屈峰, 阎超, 于剑, 等.高精度激波捕捉格式的性能分析[J].北京亚洲成人在线一二三四五六区学报, 2014, 40(8):1085-1089.

    QU F, YAN C, YU J, et al.Assessment of shock capturing methods for numerical simulations of compressible turbulence with shock waves[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(8):1085-1089(in Chinese).
    [8]
    YEE H C, KLOPFER G H, MINTAGNE J L.High resolution shock capturing schemes for inviscid and viscous hypersonic flows[J].Journal Computational Physics, 1990, 83(1):31-61.
    [9]
    SPEKREIJSE S.Multigrid solution of monotone second order discretization of hypersonic conservation laws[J].Mathematics of Computational, 1987, 49(179):135-155. doi: 10.1090/S0025-5718-1987-0890258-9
    [10]
    YOON S H, KIM K H, KIM C.Multi-dimensional limiting process for the three-dimensional flow physics analyses[J].Journal of Computational Physics, 2008, 227(12):6001-6043. doi: 10.1016/j.jcp.2008.02.012
    [11]
    KIM K H, KIM C.Accurate, efficient and monotonic numetical methods for multi-dimensional compressible flows, Part Ⅱ:Multi-dimensional limiting process[J].Journal of Computational Physics, 2005, 208(2):570-615. doi: 10.1016/j.jcp.2005.02.022
    [12]
    阎超.计算流体力学方法及应用[M].北京:北京亚洲成人在线一二三四五六区出版社, 2006:123-127.

    YAN C.Computational fluid dynamic's methods and applications[M].Beijing:Beihang University Press, 2006:123-127(in Chinese).
    [13]
    孙迪, 阎超, 于剑, 等.高精度多维限制器的性能分析[J].北京亚洲成人在线一二三四五六区学报, 2015, 41(3):437-442.

    SUN D, YAN C, YU J, et al.Performance analysis of high accurate multi-dimensional limiting process[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3):437-442(in Chinese).
    [14]
    WRIGHT M J, SINHA K, OLEJNICZAK J, et al.Numerical and experimental investigation of double-cone shock interactions[J].AIAA Journal, 2000, 38(12):2268-2276. doi: 10.2514/2.918
    [15]
    BRIAN R H, THOMAS J H, SCOTT A B, et al.X-33 computational aeroheating predictions and comparisons with experimental data[J].Journal of Spacecraft and Rockets, 1999, 38(5):658-669.
    [16]
    BERRY S A, HORVATH T J, HOLLIS B R, et al.X-33 hypersonic boundary-layer transition[J].Journal of Spacecraft and Rockets, 2001, 38(5):646-657. doi: 10.2514/2.3750
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views(1398) PDF downloads(647) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return