| Citation: | LI Peichang, YUAN Hongjie, LAN Jie, et al. Dynamic fault tree analysis using sequential binary decision diagrams[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(1): 167-175. doi: 10.13700/j.bh.1001-5965.2016.0036(in Chinese) |
In order to solve the problem of the existing dynamic fault tree analysis method, such as state space explosion, low computational efficiency and limited application range, a method for dynamic fault tree analysis based on sequential binary decision diagram is proposed. First, dynamic logic gates are transformed into logic gates with sequential events. Next, sequential binary decision diagram model and Boolean operation with sequential events are presented. Then, failure paths of dynamic fault tree are obtained by sequential binary decision diagram and extensional Boolean operation. Finally, probability calculations for sequential events with multi-unit are deduced. With a certain ammunition as an example, considering the imperfect coverage problem, the dynamic fault tree is analyzed under the situations of exponential and non-exponential distribution. The results show that this method has the advantages of high efficiency, high accuracy and wide applicability, which provides a theoretical basis for the reliability analysis of complex dynamic systems.
| [1] |
LENG L,LIU Y.Fault tree reliability analysis for passive medium pressure safety injection system in nuclear power plant[J].Energy and Power Engineering,2013,5(4):264-268. doi: 10.4236/epe.2013.54B051
|
| [2] |
NYSTROM B,AUSTRIN L,ANKARBACK N,et al.Fault tree analysis of an aircraft electric power supply system to electrical actuators[C]//Probabilistic Methods Applied to Power Systems,2006.Piscataway,NJ:IEEE Press,2006:1-7.
|
| [3] |
DUGAN J B,BAVUSO S J,BOYD M A.Dynamic fault-tree for fault-tolerant computer systems[J].IEEE Transactions on Reliability,1992,41(3):363-376. doi: 10.1109/24.159800
|
| [4] |
DUGAN J B,SULLIVAN K J,COPPIT D.Developing a low-cost high-quality software tool for dynamic fault-tree analysis[J].IEEE Transactions on Reliability,2000,49(1):49-59. doi: 10.1109/24.855536
|
| [5] |
SMOTHERMAN M K,ZEMIUDEH K.A non-homogenedous Makrov model for phased-mission reliability analysis[J].IEEE Transaciton on Reliability,1989,38(5):585-590. doi: 10.1109/24.46486
|
| [6] |
DUGAN J B.Galileo:A tool for dynamic fault tree analysis[C]//Proceedings of the 11th International Conference on Computer Performance Evaluation:Modelling Techniques and Tools.Berlin:Springer-Verlag,2000:328-331.
|
| [7] |
GULATI R,DUGAN J B.A modular approach for analyzing static and dynamic fault trees[C]//Reliability and Maintainability Symposium.Piscataway,NJ:IEEE Press,1997:57-63.
|
| [8] |
AMARI S,DILL G,HOWALD E.A new approach to solve dynamic fault trees[C]//Annual Reliability and Maintainability Symposium.Piscataway,NJ:IEEE Press,2003:374-379.
|
| [9] |
BOUDALI H,DUGAN J B.A new Bayesian network approach to solve dynamic fault trees[C]//Reliability and Maintainability Symposium.Piscataway,NJ:IEEE Press,2005:451-456.
|
| [10] |
RAO K D,GOPIKA V,RAO V V S S,et al.Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment[J].Reliability Engineering and System Safety,2009,94(4):872-883. doi: 10.1016/j.ress.2008.09.007
|
| [11] |
XING L D,SHRESTHA A,DAI Y.Exact combinatorial reliability analysis of dynamic systems with sequence-dependent failures[J].Reliability Engineering and System Safety,2011,96(10):1375-1385. doi: 10.1016/j.ress.2011.05.007
|
| [12] |
XING L D,TANNOUS O,BECHTA DUGAN J.Reliability analysis of nonrepairable cold-standby systems using sequential binary decision diagrams[J].IEEE Transactions on Systems Man and Cybernetics,2012,42(3):715-726. doi: 10.1109/TSMCA.2011.2170415
|
| [13] |
TANNOUS O, XING L,DUGAN J B.Reliability analysis of warm standby systems using sequential BDD[C]//Reliability and Maintainability Symposium.Piscataway,NJ:IEEE Press,2011:1-7.
|
| [14] |
DUGAN J B. Fault trees and imperfect coverage[J].IEEE Transactions on Reliability,1989,38(2):177-185. doi: 10.1109/24.31102
|
| [15] |
BRYANT R E. Graph-based algorithms for boolean function manipulation[J].IEEE Transactions on Computers,1986,35(8):677-691.
|
| [16] |
YUGE T, YANAGI S.Quantitative analysis of a fault tree with priority AND gates[J].Reliability Engineering & System Safety,2008,93(11):1577-1583.
|