留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性太阳电池极限弯曲半径测量方法

高红鑫 赵寿根 朱佳林 余亦豪 张振

高红鑫,赵寿根,朱佳林,等. 柔性太阳电池极限弯曲半径测量方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2776-2781 doi: 10.13700/j.bh.1001-5965.2024.0801
引用本文: 高红鑫,赵寿根,朱佳林,等. 柔性太阳电池极限弯曲半径测量方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2776-2781 doi: 10.13700/j.bh.1001-5965.2024.0801
GAO H X,ZHAO S G,ZHU J L,et al. Measurement methods for the critical bending radius of flexible solar cells[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2776-2781 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0801
Citation: GAO H X,ZHAO S G,ZHU J L,et al. Measurement methods for the critical bending radius of flexible solar cells[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2776-2781 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0801

柔性太阳电池极限弯曲半径测量方法

doi: 10.13700/j.bh.1001-5965.2024.0801
详细信息
    通讯作者:

    E-mail:zshougen@cqjj8.com

  • 中图分类号: V414;TB121;O353.5

Measurement methods for the critical bending radius of flexible solar cells

More Information
  • 摘要:

    随着空间太阳电池阵从刚性半刚性电池阵向高收纳比、轻量化和低成本的柔性电池阵发展,柔性太阳电池逐渐成为未来空间能源系统的关键元件。然而,柔性太阳电池在弯曲状态下需保持光电转换效率和结构完整性,因此,对其极限弯曲半径的精确测量尤为重要。提出一种基于大挠度屈曲理论的柔性太阳电池弯曲半径测试方法,并搭建自动化测试平台。为验证该方法的准确性,将其结果与传统芯轴法进行对比。实验表明,利用大挠度屈曲法测得的极限弯曲半径与芯轴法的结果一致,证明了所提方法的准确性和可靠性,同时,该方法能够实现弯曲半径的连续可调测量,且自动化程度高。研究结果不仅为柔性太阳电池的结构设计提供了精确的力学参数,也为未来柔性电子器件的性能优化提供了参考依据。

     

  • 图 1  描述柔性太阳电池弯曲状态的3个参数示意图

    Figure 1.  Three parameters of the bending state of flexible solar cells

    图 2  $ xy\theta $法测试原理及试验装置

    Figure 2.  Testing principle and experimental setup of thexyθ method

    图 3  移动屈曲法示意图

    Figure 3.  Schematic diagram of moving buckling method

    图 4  柔性三结GaAs弯曲示意图

    Figure 4.  Schematic of bending of flexible triple-junction GaAs

    图 5  柔性太阳电池弯曲半径测量试验装置及原理示意图

    Figure 5.  Experimental setup and principle for measuring the bending radius of flexible solar cells

    图 6  柔性太阳电池结构示意图和实物图

    Figure 6.  Structure and picture of flexible solar cells

    图 7  不同$ {\theta }_{0} $值下柔性太阳电池弯曲形状

    Figure 7.  Bending shapes of flexible solar cells for different $ {\theta }_{0} $ values

    图 8  大挠度位移屈曲法测得的极限弯曲曲率

    Figure 8.  Ultimate bending curvature measured by the large deflection displacement buckling method

    图 9  芯轴法测试过程图

    Figure 9.  Pictures of mandrel method test

    图 10  芯轴法测试前后电池亮度变化

    Figure 10.  Changes in brightness of the battery before and after mandrel method test

  • [1] 于辉, 张伟, 崔新宇, 等. 空间太阳电池阵技术现状及发展趋势[J]. 电源技术, 2020, 44(10): 1552-1557. doi: 10.3969/j.issn.1002-087X.2020.10.038

    YU H, ZHANG W, CUI X Y, et al. Current status and development trends of space solar arrays[J]. Power Supply Technology, 2020, 44(10): 1552-1557(in Chinese). doi: 10.3969/j.issn.1002-087X.2020.10.038
    [2] 杨淑利, 梁潇, 邵立民, 等. 空间柔性太阳电池阵发展现状及趋势[J]. 宇航学报, 2023, 44(12): 1810-1819. doi: 10.3873/j.issn.1000-1328.2023.12.003

    YANG S L, LIANG X, SHAO L M, et al. Development and trend of spacial flexible solar array[J]. Journal of Astronautics, 2023, 44(12): 1810-1819(in Chinese). doi: 10.3873/j.issn.1000-1328.2023.12.003
    [3] 王凯, 王训春, 钱斌, 等. 高效太阳电池及其阵列技术的空间应用研究进展[J]. 硅酸盐学报, 2022, 50(5): 1436-1446.

    WANG K, WANG X C, QIAN B, et al. Research progress on the space application of high-efficiency solar cells and arrays[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1436-1446(in Chinese).
    [4] LI J, AIERKEN A, LIU Y, et al. A brief review of high efficiency III-V solar cells for space application[J]. Frontiers in Physics, 2021, 8: 631925. doi: 10.3389/fphy.2020.631925
    [5] 张伟, 兰志成, 吴致丞. 卫星卷绕式柔性太阳电池阵关键技术研究[J]. 电子技术应用, 2022, 48(6): 10-13.

    ZHANG W, LAN Z C, WU Z C. The key technical analysis of the roll-out solar array[J]. Application of Electronic Technique, 2022, 48(6): 10-13(in Chinese).
    [6] 金海雯, 于辉, 赵颖, 等. 半刚性太阳电池阵抗力学环境设计与分析[J]. 电源技术, 2012, 36(6): 813-815. doi: 10.3969/j.issn.1002-087X.2012.06.015

    JIN H W, YU H, ZHAO Y, et al. Against mechanical environmental design and analysis of semi-rigid solar array[J]. Chinese Journal of Power Sources, 2012, 36(6): 813-815(in Chinese). doi: 10.3969/j.issn.1002-087X.2012.06.015
    [7] MAO L J, MENG Q H, AHMAD A, et al. Mechanical analyses and structural design requirements for flexible energy storage devices[J]. Advanced Energy Materials, 2017, 7(23): 1700535. doi: 10.1002/aenm.201700535
    [8] YUAN Z S, YAO M J, ZHANG N N, et al. Mechanical analysis of flexible integrated energy storage devices under bending by the finite element method[J]. Science China Materials, 2021, 64(9): 2182-2192. doi: 10.1007/s40843-020-1613-4
    [9] LAW D C, EDMONDSON K M, SIDDIQI N, et al. Lightweight, flexible, high-efficiency III-V multijunction cells[C]//Proceedings of the 4th World Conference on Photovoltaic Energy Conference. Piscataway: IEEE Press, 2006: 1879-1882.
    [10] FUKUDA K, SUN L L, DU B C, et al. A bending test protocol for characterizing the mechanical performance of flexible photovoltaics[J]. Nature Energy, 2024, 9: 1335-1343. doi: 10.1038/s41560-024-01651-2
    [11] 李征泰. 柔性锂离子电池的失效分析及新型结构研究[D]. 成都: 电子科技大学, 2023, 10-20.

    LI Z T. Research on failure analysis and new structures of flexible lithium-ion batteries [D]. Chengdu: Electronic Science and Technology University of China, 2023: 10-20(in Chinese).
    [12] GREGO S, LEWIS J, VICK E, et al. Development and evaluation of bend-testing techniques for flexible-display applications[J]. Journal of the Society for Information Display, 2005, 13(7): 575. doi: 10.1889/1.2001215
    [13] PARK S I, AHN J H, FENG X, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates[J]. Advanced Functional Materials, 2008, 18(18): 2673-2684. doi: 10.1002/adfm.200800306
    [14] CHEN Z, COTTERELL B, WANG W, et al. A mechanical assessment of flexible optoelectronic devices[J]. Thin Solid Films, 2001, 394(1-2): 201-205. doi: 10.1016/S0040-6090(01)01138-5
    [15] TAGUCHI R, AKAMATSU N, KUWAHARA K, et al. Nanoscale analysis of surface bending strain in film substrates for preventing fracture in flexible electronic devices[J]. Advanced Materials Interfaces, 2021, 8(5): 2001662. doi: 10.1002/admi.202001662
  • 加载中
图(10)
计量
  • 文章访问数:  228
  • HTML全文浏览量:  51
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-11
  • 录用日期:  2025-01-10
  • 网络出版日期:  2025-01-13
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答