留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空气球太阳电池标定球体反光影响分析及防护

张益清 黄庭双 李永祥 杨燕初 徐国宁

张益清,黄庭双,李永祥,等. 高空气球太阳电池标定球体反光影响分析及防护[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2767-2775 doi: 10.13700/j.bh.1001-5965.2024.0772
引用本文: 张益清,黄庭双,李永祥,等. 高空气球太阳电池标定球体反光影响分析及防护[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2767-2775 doi: 10.13700/j.bh.1001-5965.2024.0772
ZHANG Y Q,HUANG T S,LI Y X,et al. Analysis and mitigation of spherical reflection effects on solar cell calibration using high-altitude balloons[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2767-2775 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0772
Citation: ZHANG Y Q,HUANG T S,LI Y X,et al. Analysis and mitigation of spherical reflection effects on solar cell calibration using high-altitude balloons[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2767-2775 (in Chinese) doi: 10.13700/j.bh.1001-5965.2024.0772

高空气球太阳电池标定球体反光影响分析及防护

doi: 10.13700/j.bh.1001-5965.2024.0772
基金项目: 

中国科学院稳定支持基础研究领域青年团队计划(YSBR-102);国家重点研发计划(2022YFB3903000,2022YFB3903005)

详细信息
    通讯作者:

    E-mail:xugn@aircas.ac.cn

  • 中图分类号: V273;V11;TB971

Analysis and mitigation of spherical reflection effects on solar cell calibration using high-altitude balloons

Funds: 

CAS Project for Young Scientists in Basic Research (YSBR-102); National Key Research and Development Program of China (2022YFB3903000,2022YFB3903005)

More Information
  • 摘要:

    高空气球在太阳电池标定领域内应用越来越广泛,对标定精度的需求日益增加。常规的标定方法只考虑了对日精度,忽略了球体反射的太阳光对标定结果的影响,导致标定结果比理论值高出约5%。为此,提出一种球体反光影响分析方法。使用3阶贝塞尔曲线拟合球体形状并建立模型;计算试验中球体反射对标定装置接收不同波段光的影响;提出如何进行防护及计算球体反射可能的误差原因。采用高空气球和标定设备,在35000 m的高空上对18片太阳电池进行标定。试验和仿真结果表明,球体反射对标定的影响客观存在。仿真结果显示,球体反射导致短路电流最大增加了9.28%;试验数据显示,相较于标准太阳电池的不经过大气层的太阳光谱(AM0)值,实际短路电流高出约5.28%。最后,根据仿真结果,提出使用特定角度的遮光罩以避免球体反射对标定的影响。

     

  • 图 1  太阳电池标定飞行系统

    Figure 1.  Solar cell calibration flight system

    图 2  平飞过程球体反射示意图

    Figure 2.  Schematic diagram of spherical reflection during level flight

    图 3  球体建模示意图

    Figure 3.  Sphere modeling diagram

    图 4  高空气球和标定装置示意图

    Figure 4.  Schematic diagram of high-altitude balloon and calibration device

    图 5  反射光入射角随时间变化曲线

    Figure 5.  Curve of incidence angle changing over time

    图 6  可见光反射比随时间变化曲线

    Figure 6.  Curve of visible light reflectance% over time

    图 7  红外光反射比随时间变化曲线

    Figure 7.  Curve of infrared light reflectance% over time

    图 8  球体反射计算软件

    Figure 8.  Spherical reflection calculation software

    图 9  反射光占比随时间变化曲线

    Figure 9.  Curve of percentage of light reflectance over time

    图 10  平飞段待标定太阳电池温度变化曲线(4 s/条)

    Figure 10.  Curve of temperature variation for solar cells during the level flight segment to be calibrated (4 s/record)

    图 11  球体反射分析软件

    Figure 11.  Spherical reflection analysis software

    图 12  反射光与水平面夹角随时间变化曲线

    Figure 12.  Curve of angle between the reflected light and the horizontal plane over time

    图 13  遮光板、标定装置和球体的几何位置示意图

    Figure 13.  Schematic diagram of the positions of the sunshield, calibration device, and spherical object

    表  1  球体材料对不同波段光的反射率

    Table  1.   Reflectance of spherical materials for different wavelengths of light

    波段 反射率
    可见光390~780 nm波段 0.1042
    红外光780~1200 nm波段(标准硅片上限波段) 0.085
    下载: 导出CSV

    表  2  各类型太阳电池标定数据

    Table  2.   Calibration data for various solar cells

    序号 短路电流/
    mA
    开路电压/
    mV
    被测电池
    温度/℃
    类型 标准电池/
    mA
    18-04-1 84.5 1328.6 25.0 单晶硅 171.2
    18-04-2 112.7 886.9 25.3 单晶硅 171.2
    18-04-3 94.55 251.8 25.6 砷化镓 170.6
    18-04-4 82.2 2542.1 24.9 单晶硅 170.6
    18-04-5 56.8 1450.2 25.5 单晶硅 170.8
    18-04-6 66.4 1052.0 25.3 单晶硅 170.8
    18-04-7 58.4 793.3 25.1 单晶硅 170.0
    18-04-8 69.4 240.6 24.9 砷化镓 170.6
    18-04-9 58.0 3438.3 24.5 砷化镓 166.8
    18-04-10 50.6 1548.6 24.6 单晶硅 170.7
    18-04-11 47.2 1189.7 25.0 砷化镓 165.8
    18-04-12 49.2 975.1 24.6 砷化镓 170.0
    18-04-13 58.5 690.2 24.5 砷化镓 161.7
    18-04-14 48.1 443.8 25.1 砷化镓 170.9
    18-04-15 177.1 617.4 25.0 砷化镓 171.3
    18-04-16 73.3 1457.5 25.3 单晶硅 171.6
    18-04-17 76.1 1006.1 25.0 单晶硅 171.4
    18-04-18 77.6 473.25 24.8 单晶硅 170.8
     注:表格中数据为符合条件数据的平均值。
    下载: 导出CSV
  • [1] BRANDHORST H W, RODIEK J A. Space solar array reliability: a study and recommendations[J]. Acta Astronautica, 2008, 63(11): 1233-1238.
    [2] HOU Y, DU X, SCHEINER S, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells[J]. Science, 2017, 358(6367): 1192-1197. doi: 10.1126/science.aao5561
    [3] SCHEIMAN D, BRINKER D, SNYDER D, et al. Summary of the 2000-2001 NASA Glenn Lear Jet AM0 solar cell calibration program[C]//Proceedings of the 17th Space Photovoltaic Research and Technology Conference. Cleveland: NASA Glenn Research Center, 2002: 195-201.
    [4] JIANG Q, ZHANG L Q, WANG H L, et al. Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells[J]. Nature Energy, 2017, 2: 16177.
    [5] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348(6240): 1234-1237. doi: 10.1126/science.aaa9272
    [6] DENG Y H, PENG E, SHAO Y C, et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers[J]. Energy & Environmental Science, 2015, 8(5): 1544-1550.
    [7] XU G N, CAI P Y, TU Y G, et al. Calibration for space solar cells: progress, prospects, and challenges[J]. Solar RRL, 2024, 8(6): 2300822. doi: 10.1002/solr.202300822
    [8] MÜHLEIS M, KRÖGER I, HOHL-EBINGER J. Fast and accurate short-circuit current versus irradiance determination of a spectrally nonlinear solar cell using a spectral shaping setup[J]. Solar Energy Materials and Solar Cells, 2021, 230: 111208. doi: 10.1016/j.solmat.2021.111208
    [9] THOMAS N L, CHISEL D M. High altitude calibration of solar cells using rockets[C]//Proceedings of the NASA Sounding Rocket Technology Conference. Washington, D. C. : NASA, 1975, 0085: 3-8.
    [10] ZOUTENDYK J A. Space calibration of standard solar cells using high-altitude balloon flights[J]. Journal of Spacecraft and Rockets, 1965, 2: 399-404. doi: 10.2514/3.28191
    [11] HOHEISEL R, WILT D, SCHEIMAN D, et al. AM0 solar cell calibration under near space conditions[C]//Proceedings of the IEEE 40th Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2014: 1811-1814.
    [12] ZHAO C X, LIU J N, LI B Q, et al. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries[J]. Advanced Functional Materials, 2020, 30(36): 2003619. doi: 10.1002/adfm.202003619
    [13] ANSPAUGH B E, WEISS R S. Results of the 1987 NASA/JPL balloon flight solar cell calibration program[C]//Proceedings of the 14th Space Photovoltaic Research and Technology Conference. Cleveland: NASA Glenn Research Center, 1987: 182617.
    [14] CARDINALETTI I, VANGERVEN T, NAGELS S, et al. Organic and perovskite solar cells for space applications[J]. Solar Energy Materials and Solar Cells, 2018, 182: 121-127. doi: 10.1016/j.solmat.2018.03.024
    [15] TU Y G, XU G N, YANG X Y, et al. Mixed-cation perovskite solar cells in space[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(7): 974221.
    [16] REB L K, BÖHMER M, PREDESCHLY B, et al. Perovskite and organic solar cells on a rocket flight[J]. Joule, 2020, 4(9): 1880-1892. doi: 10.1016/j.joule.2020.07.004
    [17] BAILEY S, SNYDER D, JENKINS P, et al. Standards for space solar cells and arrays[C]//Proceedings of the Seventh European Space Power Conference. Stresa: European Space Agency, 2005: 575-580.
    [18] 今泉充, 梯友哉, 久木田明夫, 等. JAXA大気球による標準太陽電池の較正実験計画[C]//大気球シンポジウム: 平成28年度. 相模原: 宇宙航空研究開発機構宇宙科学研究所, 2016.

    IMAIZUMI M, HASHIGO Y, KUKITA A, et al. Calibration experiment plan for standard solar cells using JAXA balloon-borne platforms[C]//Balloon Symposium: FY2016. Sagamihara: Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 2016(in Japanese).
    [19] 杨亦强. 高空气球搭载AM0太阳电池标定试验初步结果[C]//中国太阳能光伏会议. 成都: 中国可再生能源学会, 2006.

    YANG Y Q. Preliminary results of AM0 solar cell calibration experiment using high-altitude balloon[C]//China Conference on Solar Photovoltaics. Chengdu: Chinese Renewable Energy Society, 2006(in Chinese).
    [20] 刘福才, 赵阳, 杨亦强, 等. 高空气球太阳能电池标定用太阳跟踪控制技术[J]. 航空学报, 2014, 35(11): 3137-3144.

    LIU F C, ZHAO Y, YANG Y Q, et al. Sun tracking technology for balloon flight solar cell calibration[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11): 3137-3144(in Chinese).
    [21] TU Y G, XU G N, YANG X Y, et al. Mixed-cation perovskite solar cells in space[J]. Science China-Physics, Mechanics & Astronomy, 2019, 62(7): 974221.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  31
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-29
  • 录用日期:  2024-12-20
  • 网络出版日期:  2024-12-24
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答