留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变换学习的快速多切片MRI重建算法

段继忠 刘欢

段继忠,刘欢. 基于变换学习的快速多切片MRI重建算法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(7):2290-2303 doi: 10.13700/j.bh.1001-5965.2023.0561
引用本文: 段继忠,刘欢. 基于变换学习的快速多切片MRI重建算法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(7):2290-2303 doi: 10.13700/j.bh.1001-5965.2023.0561
DUAN J Z,LIU H. Fast multi-slice MRI reconstruction algorithm based on transform learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2290-2303 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0561
Citation: DUAN J Z,LIU H. Fast multi-slice MRI reconstruction algorithm based on transform learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2290-2303 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0561

基于变换学习的快速多切片MRI重建算法

doi: 10.13700/j.bh.1001-5965.2023.0561
基金项目: 

国家自然科学基金(61861023);云南省基础研究计划项目(202301AT070452)

详细信息
    通讯作者:

    E-mail:duanjz@kust.edu.cn

  • 中图分类号: TP391

Fast multi-slice MRI reconstruction algorithm based on transform learning

Funds: 

National Natural Science Foundation of China (61861023); Supported by Yunnan Fundamental Research Projects (202301AT070452)

More Information
  • 摘要:

    二维(2D)多切片磁共振数据在相邻切片之间具有高度的相关性,通过利用切片间的冗余性能够重建出更高质量的切片图像,但由于硬件条件的限制,2D多切片磁共振成像(MRI)需要耗费大量时间。为提高2D多切片磁共振图像的重建质量和重建速度,将联合稀疏变换学习正则项引入到多切片Hankel张量完成(MS-HTC)模型中,提出一种快速2D多切片磁共振成像重建(FMS-JTLHTC)算法。该算法使用交替方向乘子法对目标问题进行求解;引入快速迭代收缩阈值法加快收敛,并使用图形处理器对算法进行加速。使用4组脑部数据集在2种不同采样模式下进行实验,结果表明:FMS-JTLHTC算法的峰值信噪比(PSNR)相较于同时自动校准和K空间估计(SAKE)算法、并行成像数据的局部K空间领域的低秩建模(PLORAKS)算法和MS-HTC算法分别平均提高了4.04 dB、3.67 dB和2.07 dB,而且重建速度相比MS-HTC算法提高了14倍。

     

  • 图 1  4种算法对AF=5的1D-VRDU采样模式下的dataset 1重建的图像和误差图

    Figure 1.  Images and error maps of dataset 1 reconstruction by four algorithms for 1D-VRDU sampling pattern with AF=5

    图 2  4种算法对AF=10的2D-VRDU采样模式下dataset 2重建的图像和误差图

    Figure 2.  Images and error maps of dataset 2 reconstruction by four algorithms for 2D-VRDU sampling pattern with AF=10

    图 3  4种算法对AF=3的1D-Poisson欠采样模式下datase 1重建的图像和误差图

    Figure 3.  Images and error maps of dataset 1 reconstruction by four algorithms for 1D-Poisson undersampling mode with AF=3

    图 4  FMS-JTLHTC算法与其他算法对不同加速因子的2种采样模式下4个数据集重建图像的PSNR的差值箱线图

    Figure 4.  Boxplot of difference in PSNR between FMS-JTLHTC algorithm and other algorithms for reconstructed images of four datasets with different acceleration factors for two sampling patterns

    图 5  数据集dataset 3在2种采样模式下进行重建的收敛性分析

    Figure 5.  Convergence analysis of dataset dataset 3 reconstructed in two sampling patterns

    图 6  FMS-JTLHTC、rawFMS-JTLHTC和MS-HTC算法对4个数据集进行重建的时间比较

    Figure 6.  Comparison of reconstruction times of FMS-JTLHTC, rawFMS-JTLHTC and MS-HTC algorithms for four datasets

    图 7  FMS-JTLHTC算法对5倍加速的1D-VRDU采样模式下dataset 1重建时参数$\alpha $和$ {\mu _1} $的变化对重构图像PSNR值的影响

    Figure 7.  Effect of variation of parameters $\alpha $ and $ {\mu _1} $ on PSNR values of reconstructed images during dataset 1 reconstruction by FMS-JTLHTC algorithm for 1D-VRDU sampling mode with 5-fold acceleration

    图 8  FMS-JTLHTC和MS-JTLHTC算法对5倍加速的1D-VRDU采样模式下4个数据集重建时PSNR值随迭代次数的变化

    Figure 8.  Variation of PSNR values with number of iterations for four datasets reconstructed by FMS-JTLHTC and MS-JTLHTC algorithm with 5-fold acceleration of 1D-VRDU sampling mode

    表  1  4种算法对不同加速因子的1D-VRDU采样模式下4个数据集重建的评价指标平均值

    Table  1.   Mean values of evalution indicators reconstructed by four algorithms for four datasets in 1D-VRDU sampling pattern with different acceleration factors

    算法 AF PSNR/dB MSSIM FSIM HFEN
    SAKE[6] 3 32.86 0.9070 0.9961 0.2070
    5 28.55 0.8370 0.9912 0.3126
    6 27.66 0.8238 0.9889 0.3437
    7 27.29 0.8062 0.9875 0.3680
    PLORAKS[7] 3 33.85 0.9151 0.9973 0.1814
    5 29.27 0.8489 0.9929 0.2892
    6 28.11 0.8304 0.9906 0.3282
    7 27.53 0.8154 0.9883 0.3659
    MS-HTC[30] 3 35.19 0.9317 0.9981 0.1365
    5 31.82 0.8844 0.9954 0.2083
    6 31.32 0.8805 0.9949 0.2265
    7 30.98 0.8711 0.9937 0.2416
    FMS-JTLHTC 3 38.01 0.9646 0.9990 0.0997
    5 34.59 0.9401 0.9981 0.1504
    6 33.71 0.9318 0.9976 0.1698
    7 33.39 0.9267 0.9973 0.1830
    下载: 导出CSV

    表  2  4种算法对不同加速因子的2D-VRDU采样模式下4个数据集重建的评价指标平均值

    Table  2.   Mean values of evalution indicators reconstructed by four algorithms for four datasets in 2D-VRDU sampling pattern with different acceleration factors

    算法AFPSNR /dBMSSIMFSIMHFEN
    SAKE[6]337.890.95710.99960.0664
    535.360.93260.99900.0980
    833.480.91480.99840.1361
    1032.670.90680.99790.1609
    1232.090.89770.99740.1797
    PLORAKS[7]337.860.95370.99960.0657
    535.550.93540.99910.0966
    833.650.91680.99840.1354
    1032.830.90590.99790.1549
    1232.240.89870.99750.1730
    MS-HTC[30]338.550.96260.99970.0591
    535.980.94350.99920.0850
    834.210.92630.99870.1144
    1033.260.91360.99810.1343
    1232.920.91150.99790.1458
    FMS-JTLHTC339.990.97380.99970.0529
    537.580.96190.99950.0722
    835.760.94970.99920.0951
    1034.940.94350.99890.1094
    1234.340.93830.99880.1203
    下载: 导出CSV

    表  3  4种算法对AF=3的1D-Possion欠采样模式下数据集dataset 1重建的评价指标值

    Table  3.   Values of evalution indicators for four algorithms for reconstruction of dataset dataset 1 in 1D-Possion undersampling pattern with AF=3

    算法 PSNR/dB MSSIM FSIM HFEN
    SAKE[6] 31.73 0.8904 0.9922 0.2119
    PLORAKS[7] 33.05 0.9076 0.9961 0.1795
    MS-HTC[30] 35.19 0.9322 0.9978 0.1411
    FMS-JTLHTC 38.54 0.9678 0.9991 0.1059
    下载: 导出CSV

    表  4  5种算法对AF=5的1D-VRDU采样模式下4个数据集的重建时间与速度

    Table  4.   Reconstruction times and velocities of five algorithms for four datasets in 1D-VRDU sampling mode with AF=5

    算法 t/s 速度提升倍数
    Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 1 Dataset 2 Dataset 3 Dataset 4
    SAKE[6] 779.35 779.50 779.39 779.17 44.82 36.79 32.14 23.62
    PLORAKS[7] 570.30 517.17 578.35 777.84 32.79 24.41 23.85 23.58
    MS-HTC[30] 272.46 271.92 271.43 275.41 15.67 12.83 11.19 8.35
    rawFMS-JTLHTC 456.81 550.35 624.76 860.09 26.27 25.97 25.76 26.07
    FMS-JTLHTC 17.39 21.19 24.25 32.99 1.00 1.00 1.00 1.00
    下载: 导出CSV

    表  5  5种算法对AF=10的2D-VRDU采样模式下四个数据集的重建时间与速度

    Table  5.   Reconstruction times and velocities of the five algorithms for four datasets in 2D-VRDU sampling mode with AF=10

    算法 t/s 速度提升倍数
    Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 1 Dataset 2 Dataset 3 Dataset 4
    SAKE[6] 311.95 207.80 259.67 207.94 29.10 19.37 18.15 14.21
    PLORAKS[7] 99.62 96.39 98.85 398.66 9.29 8.98 6.91 27.25
    MS-HTC[30] 222.17 168.68 193.70 165.82 20.72 15.72 13.54 11.33
    rawFMS-JTLHTC 282.55 281.26 376.39 374.50 26.32 26.21 26.30 25.60
    FMS-JTLHTC 10.72 10.73 14.31 14.63 1.00 1.00 1.00 1.00
    下载: 导出CSV
  • [1] PRUESSMANN K P, WEIGER M, SCHEIDEGGER M B, et al. SENSE: sensitivity encoding for fast MRI[J]. Magnetic Resonance in Medicine, 1999, 42(5): 952-962. doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
    [2] SODICKSON D K, MANNING W J. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays[J]. Magnetic Resonance in Medicine, 1997, 38(4): 591-603. doi: 10.1002/mrm.1910380414
    [3] UECKER M, LAI P, MURPHY M J, et al. ESPIRiT: an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA[J]. Magnetic Resonance in Medicine, 2014, 71(3): 990-1001. doi: 10.1002/mrm.24751
    [4] GRISWOLD M A, JAKOB P M, HEIDEMANN R M, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA)[J]. Magnetic Resonance in Medicine, 2002, 47(6): 1202-1210. doi: 10.1002/mrm.10171
    [5] LUSTIG M, PAULY J M. SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space[J]. Magnetic Resonance in Medicine, 2010, 64(2): 457-471. doi: 10.1002/mrm.22428
    [6] SHIN P J, LARSON P E Z, OHLIGER M A, et al. Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion[J]. Magnetic Resonance in Medicine, 2014, 72(4): 959-970. doi: 10.1002/mrm.24997
    [7] HALDAR J P, ZHUO J W. P-LORAKS: low-rank modeling of local K-space neighborhoods with parallel imaging data[J]. Magnetic Resonance in Medicine, 2016, 75(4): 1499-1514. doi: 10.1002/mrm.25717
    [8] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [9] LUSTIG M, DONOHO D, PAULY J M. Sparse MRI: the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195. doi: 10.1002/mrm.21391
    [10] LAI Z Y, QU X B, LIU Y S, et al. Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform[J]. Medical Image Analysis, 2016, 27: 93-104. doi: 10.1016/j.media.2015.05.012
    [11] YANG J F, ZHANG Y, YIN W T. A fast alternating direction method for TVL1-L2 signal reconstruction from partial Fourier data[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 288-297. doi: 10.1109/JSTSP.2010.2042333
    [12] RAVISHANKAR S, BRESLER Y. MR image reconstruction from highly undersampled K-space data by dictionary learning[J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028-1041. doi: 10.1109/TMI.2010.2090538
    [13] AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. doi: 10.1109/TSP.2006.881199
    [14] RAVISHANKAR S, BRESLER Y. Learning sparsifying transforms[J]. IEEE Transactions on Signal Processing, 2013, 61(5): 1072-1086. doi: 10.1109/TSP.2012.2226449
    [15] RAVISHANKAR S, BRESLER Y. Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to magnetic resonance imaging[J]. SIAM Journal on Imaging Sciences, 2015, 8(4): 2519-2557. doi: 10.1137/141002293
    [16] 李玺兰, 段继忠. 基于稀疏变换学习的改进灵敏度编码重建算法[J]. 北京邮电大学学报, 2022, 45(5): 97-102.

    LI X L, DUAN J Z. An improved sensitivity encoding reconstruction algorithm based on sparse transform learning[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5): 97-102(in Chinese).
    [17] 段继忠, 钱青青. 基于SIDWT和迭代自一致性的快速并行成像重建方法[J]. 上海交通大学学报, 2023, 57(5): 582-592.

    DUAN J Z, QIAN Q Q. Fast parallel imaging reconstruction method based on SIDWT and iterative self-consistency[J]. Journal of Shanghai Jiao Tong University, 2023, 57(5): 582-592(in Chinese).
    [18] DUAN J Z, PAN T, LIU Y, et al. Non-local low-rank constraint-based self-consistent PMRI reconstruction using eigenvector maps[J]. IET Signal Processing, 2023, 17(3): e12180. doi: 10.1049/sil2.12180
    [19] PAN T, DUAN J Z, WANG J F, et al. Iterative self-consistent parallel magnetic resonance imaging reconstruction based on nonlocal low-rank regularization[J]. Magnetic Resonance Imaging, 2022, 88: 62-75. doi: 10.1016/j.mri.2022.01.012
    [20] DUAN J Z, LIU C, LIU Y, et al. Adaptive transform learning and joint sparsity based PLORAKS parallel magnetic resonance image reconstruction[J]. IEEE Access, 2020, 8: 212315-212326. doi: 10.1109/ACCESS.2020.3039527
    [21] LIN C Y, FESSLER J A. Efficient dynamic parallel MRI reconstruction for the low-rank plus sparse model[J]. IEEE Transactions on Computational Imaging, 2019, 5(1): 17-26. doi: 10.1109/TCI.2018.2882089
    [22] OTAZO R, CANDÈS E, SODICKSON D K. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components[J]. Magnetic Resonance in Medicine, 2015, 73(3): 1125-1136. doi: 10.1002/mrm.25240
    [23] PANG Y, ZHANG X L. Interpolated compressed sensing for 2D multiple slice fast MR imaging[J]. PLoS One, 2013, 8(2): e56098. doi: 10.1371/journal.pone.0056098
    [24] DATTA S, DEKA B. Magnetic resonance image reconstruction using fast interpolated compressed sensing[J]. Journal of Optics, 2018, 47(2): 154-165. doi: 10.1007/s12596-017-0428-8
    [25] MURAD M, BILAL M, JALIL A, et al. Efficient reconstruction technique for multi-slice CS-MRI using novel interpolation and 2D sampling scheme[J]. IEEE Access, 2020, 8: 117452-117466. doi: 10.1109/ACCESS.2020.3004731
    [26] DATTA S, DEKA B. Efficient interpolated compressed sensing reconstruction scheme for 3D MRI[J]. IET Image Processing, 2018, 12(11): 2119-2127. doi: 10.1049/iet-ipr.2018.5473
    [27] DATTA S, DEKA B, MULLAH H U, et al. An efficient interpolated compressed sensing method for highly correlated 2D multi-slice MRI[C]//Proceedings of the International Conference on Accessibility to Digital World. Piscataway: IEEE Press, 2016: 187-192.
    [28] MURAD M, JALIL A, BILAL M, et al. Radial undersampling-based interpolation scheme for multislice CSMRI reconstruction techniques[J]. BioMed Research International, 2021, 2021: 6638588. doi: 10.1155/2021/6638588
    [29] DEKA B, DATTA S. Calibrationless joint compressed sensing reconstruction for rapid parallel MRI[J]. Biomedical Signal Processing and Control, 2020, 58: 101871. doi: 10.1016/j.bspc.2020.101871
    [30] LIU Y L, YI Z Y, ZHAO Y J, et al. Calibrationless parallel imaging reconstruction for multislice MR data using low-rank tensor completion[J]. Magnetic Resonance in Medicine, 2021, 85(2): 897-911. doi: 10.1002/mrm.28480
    [31] BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183-202. doi: 10.1137/080716542
    [32] LIU Y P, LIU T T, LIU J N, et al. Smooth robust tensor principal component analysis for compressed sensing of dynamic MRI[J]. Pattern Recognition, 2020, 102: 107252. doi: 10.1016/j.patcog.2020.107252
    [33] LIU D, ZHOU J J, MENG M M, et al. Highly undersampling dynamic cardiac MRI based on low-rank tensor coding[J]. Magnetic Resonance Imaging, 2022, 89: 12-23. doi: 10.1016/j.mri.2022.01.013
    [34] HE J F, LIU X T, LUAN N N. Bi-smooth constraints for accelerated dynamic MRI with low-rank plus sparse tensor decomposition[J]. Biomedical Signal Processing and Control, 2023, 82: 104530. doi: 10.1016/j.bspc.2022.104530
    [35] ZHANG Y H, HU Y. Dynamic cardiac MRI reconstruction using combined tensor nuclear norm and casorati matrix nuclear norm regularizations[C]//Proceedings of the IEEE 19th International Symposium on Biomedical Imaging. Piscataway: IEEE Press, 2022: 1-4.
    [36] WU T L, GAO B, FAN J C, et al. Low-rank tensor completion based on self-adaptive learnable transforms[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 8826-8838. doi: 10.1109/TNNLS.2022.3215974
    [37] BERGQVIST G, LARSSON E G. The higher-order singular value decomposition: theory and an application [lecture notes][J]. IEEE Signal Processing Magazine, 2010, 27(3): 151-154. doi: 10.1109/MSP.2010.936030
    [38] TUCKER L R. Some mathematical notes on three-mode factor analysis[J]. Psychometrika, 1966, 31(3): 279-311. doi: 10.1007/BF02289464
    [39] DE LATHAUWER L, DE MOOR B, VANDEWALLE J. A multilinear singular value decomposition[J]. SIAM Journal on Matrix Analysis and Applications, 2000, 21(4): 1253-1278. doi: 10.1137/S0895479896305696
    [40] LIU Y P, CHEN L X, ZHU C. Improved robust tensor principal component analysis via low-rank core matrix[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1378-1389. doi: 10.1109/JSTSP.2018.2873142
    [41] VANNIEUWENHOVEN N, VANDEBRIL R, MEERBERGEN K. A new truncation strategy for the higher-order singular value decomposition[J]. SIAM Journal on Scientific Computing, 2012, 34(2): A1027-A1052. doi: 10.1137/110836067
    [42] DUAN J Z, LIU Y, WANG J F. Accelerated SPIRiT parallel MR image reconstruction based on joint sparsity and sparsifying transform learning[J]. IEEE Transactions on Computational Imaging, 2023, 9: 276-288. doi: 10.1109/TCI.2023.3252260
    [43] GILLARD J. Cadzow’s basic algorithm, alternating projections and singular spectrum analysis[J]. Statistics and Its Interface, 2010, 3(3): 335-343. doi: 10.4310/SII.2010.v3.n3.a7
    [44] SOUZA R, BENTO M, NOGOVITSYN N, et al. Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction[J]. Magnetic Resonance Imaging, 2020, 71: 140-153. doi: 10.1016/j.mri.2020.06.002
    [45] CORRIVEAU P, WEBSTER A. VQEG evaluation of objective methods of video quality assessment[J]. SMPTE Journal, 1999, 108(9): 645-648. doi: 10.5594/J17594
    [46] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. doi: 10.1109/TIP.2003.819861
    [47] ZHANG L, ZHANG L, MOU X Q, et al. FSIM: a feature similarity index for image quality assessment[J]. IEEE Transactions on Image Processing, 2011, 20(8): 2378-2386. doi: 10.1109/TIP.2011.2109730
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  212
  • HTML全文浏览量:  38
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-31
  • 录用日期:  2023-12-05
  • 网络出版日期:  2024-03-28
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答