留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临地协同观测中的高空气球组网轨迹优化

曲艺 王生 冯慧 刘强

曲艺,王生,冯慧,等. 临地协同观测中的高空气球组网轨迹优化[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):2955-2967 doi: 10.13700/j.bh.1001-5965.2023.0471
引用本文: 曲艺,王生,冯慧,等. 临地协同观测中的高空气球组网轨迹优化[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):2955-2967 doi: 10.13700/j.bh.1001-5965.2023.0471
QU Y,WANG S,FENG H,et al. Trajectory optimization of high-altitude balloon in nearspace-ground collaborative observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2955-2967 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0471
Citation: QU Y,WANG S,FENG H,et al. Trajectory optimization of high-altitude balloon in nearspace-ground collaborative observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2955-2967 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0471

临地协同观测中的高空气球组网轨迹优化

doi: 10.13700/j.bh.1001-5965.2023.0471
基金项目: 

国家重点研发计划(2022YFB3901800,2022YFB3901805)

详细信息
    通讯作者:

    E-mail:shengwang@aoe.ac.cn

  • 中图分类号: V273

Trajectory optimization of high-altitude balloon in nearspace-ground collaborative observation

Funds: 

National Key Research and Development Program of China (2022YFB3901800,2022YFB3901805)

More Information
  • 摘要:

    高空气球与地基平台组网开展协同观测的需求日益迫切,覆盖一致性是其关键问题之一,面临网络拓扑时变、气球调控能力受限、临近空间风场复杂等多重挑战。为改善高空气球与地基站网协同观测的覆盖一致性,以带有副气囊且不配备动力装置的高空气球为研究对象,从垂直方向和水平方向两方面分析高空气球轨迹调控方法,研究高空气球对地观测覆盖区域,针对高空气球位置时变的特征,设计了临地协同观测覆盖一致性评价指标,提出基于鲸鱼算法的高空气球组网轨迹优化方法,并针对多种输入条件对该方法进行了仿真验证。仿真结果表明:所提方法能够大幅改善临地协同观测的覆盖一致性,尤以夏秋季准零风层存在的情况下改善效果更为明显。

     

  • 图 1  高空气球结构示意图

    Figure 1.  Structure illustration of high-altitude balloon

    图 2  某地1~30 km高度的拟合风场

    Figure 2.  Fitting of wind field from 1 km to 30 km for a region

    图 3  高空气球对地覆盖区域示意图

    Figure 3.  Schematic diagram of high-altitude balloon coverage area on ground

    图 4  地基网络覆盖区域M示例

    Figure 4.  Example of ground based network coverage area M

    图 5  t时刻临基网络覆盖区域S(t)示例

    Figure 5.  Example of coverage area S(t) of nearspace base network at time t

    图 6  地基网络覆盖区域与t时刻临基网络覆盖区域的交集MS(t)示例

    Figure 6.  Example of intersection MS (t) between coverage area of ground based network and coverage area of nearspace based network at time t

    图 7  鲸鱼算法流程

    Figure 7.  Flow of whale algorithm

    图 8  轨迹优化与无轨迹优化的仿真结果对比

    Figure 8.  Comparison of optimized results and unoptimized results

    图 9  不同初始布局的优化结果对比

    Figure 9.  Comparison of optimization results for different initial layouts

    图 10  不同风场的仿真结果对比

    Figure 10.  Comparison of simulation results in different wind fields

    图 11  9月风场下不同初始水平布局的轨迹优化对比

    Figure 11.  Comparison of trajectory optimization with different initial horizontal layouts in wind fields of September

    图 12  不同高度调节能力的仿真结果对比(3月风场)

    Figure 12.  Comparison of simulation results for different height adjustment capabilities (March wind field)

    图 13  不同高度调节能力的仿真结果对比(6月风场)

    Figure 13.  Comparison of simulation results for different height adjustment capabilities (June wind field)

    图 14  不同高度调节能力的仿真结果对比(9月风场)

    Figure 14.  Comparison of simulation results for different height adjustment capabilities (September wind field)

    图 15  不同高度调节能力的仿真结果对比(12月风场)

    Figure 15.  Comparison of simulation results for different height adjustment capabilities (December wind field)

    表  1  地基站网仿真参数

    Table  1.   Simulation parameters of ground-based platforms

    地基测站 经度/(°) 纬度/(°) 观测覆盖半径/km
    地基测站1 96.0 38.5 200
    地基测站2 97.5 40.0 200
    地基测站3 99.0 38.0 200
    下载: 导出CSV

    表  2  高空气球仿真参数

    Table  2.   Simulation parameters of high-altitude balloons

    气球 初始经度/(°) 初始纬度/(°) 初始飞行
    高度/km
    最低飞行
    高度/km
    最高飞行
    高度/km
    副气囊内初始
    空气质量/kg
    阀门开口
    半径/m
    单位时间
    进气量/ (m3·s−1)
    高空气球1 96 41 21 20 24 144.7 0.15 0.3
    高空气球2 97 41 22 20 24 111.1 0.15 0.3
    下载: 导出CSV

    表  3  轨迹优化结果与无轨迹优化结果对比

    Table  3.   Performance comparison between optimized results and unoptimized results

    结果类型 临地协同观测覆盖一致性/%
    轨迹优化结果 24.45
    无轨迹优化结果 14.61
    下载: 导出CSV

    表  4  高空气球初始网络布局

    Table  4.   Initial network layout of high-altitude balloons

    布局 气球1
    初始
    经度/(°)
    气球1
    初始
    纬度/(°)
    气球1
    初始
    高度/km
    气球2
    初始
    经度/(°)
    气球2
    初始
    纬度/(°)
    气球2
    初始
    高度/km
    布局1 97 41 22 97 41 22
    布局2 97 41 20 97 41 24
    布局3 97 41 22 100 38 22
    布局4 97 41 20 100 38 24
    下载: 导出CSV

    表  5  高空气球初始网络布局对协同观测性能的影响对比

    Table  5.   Comparison of influence of initial network layout of high-altitude balloons on collaborative observation performance

    布局 轨迹优化后的临地协同
    观测覆盖一致性/%
    无轨迹优化的临地协同
    观测覆盖一致性/%
    布局1 23.95 4.00
    布局2 23.97 4.97
    布局3 26.64 13.09
    布局4 26.83 12.26
    下载: 导出CSV

    表  6  不同风场的轨迹优化结果对比

    Table  6.   Comparison of trajectory optimization results for different wind fields

    风场 轨迹优化后的临地协同
    观测覆盖一致性/%
    无轨迹优化的临地协同
    观测覆盖一致性/%
    3月 1.08 0.88
    6月 24.45 14.61
    9月 8.56 7.48
    12月 0.87 0.77
    下载: 导出CSV

    表  7  不同高度调控能力的轨迹优化结果对比

    Table  7.   Comparison of trajectory optimization results with different height control capabilities

    风场 气球高度调控范围为20~
    24 km的临地协同
    观测覆盖一致性/%
    气球高度调控范围为18~
    26 km的临地协同
    观测覆盖一致性/%
    3月 1.08 1.17
    6月 24.45 24.77
    9月 8.56 10.04
    12月 0.87 0.91
    下载: 导出CSV
  • [1] 顾逸东. 气球科学观测100年[J]. 现代物理知识, 2020, 32(2): 3-12.

    GU Y D. 100 years of scientific balloon observations[J]. Modern Physics, 2020, 32(2): 3-12(in Chinese).
    [2] FESEN R, BROWN Y. A method for establishing a long duration, stratospheric platform for astronomical research[J]. Experimental Astronomy, 2015, 39(3): 475-493. doi: 10.1007/s10686-015-9459-9
    [3] VOSS P B, HOLE L R, HELBLING E F, et al. Continuous in situ soundings in the Arctic boundary layer: a new atmospheric measurement technique using controlled meteorological balloons[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1): 609-617.
    [4] KREMIC T, CHENG A F, HIBBITTS K, et al. Stratospheric balloons for planetary science and the balloon observation platform for planetary science (BOPPS) mission summary[C]//Proceedings of the IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-10.
    [5] CARRENO-LUENGO H, CAMPS A, QUEROL J, et al. First results of a GNSS-R experiment from a stratospheric balloon over boreal forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2652-2663. doi: 10.1109/TGRS.2015.2504242
    [6] 宋平. 基于卫星、火箭和气球探测资料的我国临近空间大气环境特征分析[D]. 长沙: 国防科技大学, 2020: 4-7.

    SONG P. Analysis of atmospheric environment characteristics in China’s near space based on satellite, rocket and balloon detection data[D]. Changsha: National University of Defense Technology, 2020: 4-7(in Chinese).
    [7] 荆楠, 李创, 潘越, 等. 临近空间高空气球地基探测能力分析[J]. 光子学报, 2016, 45(1): 104002.

    JING N, LI C, PAN Y, et al. Analysis of ground-based detection ability of high altitude balloon in near space[J]. Acta Photonica Sinica, 2016, 45(1): 104002(in Chinese).
    [8] 王喆, 王振会, 曹晓钟. 毫米波雷达与无线电探空对云垂直结构探测的一致性分析[J]. 气象学报, 2016, 74(5): 815-826.

    WANG Z, WANG Z H, CAO X Z. Consistency analysis for cloud vertical structure derived from millimeter cloud radar and radiosonde profiles[J]. Acta Meteorologica Sinica, 2016, 74(5): 815-826(in Chinese).
    [9] 韩彦霞, 王成刚, 严家德, 等. 新型边界层气象探空系统的开发与应用[J]. 气象科技, 2017, 45(5): 804-810.

    HAN Y X, WANG C G, YAN J D, et al. Development and application of new boundary layer meteorological sounding system[J]. Meteorological Science and Technology, 2017, 45(5): 804-810(in Chinese).
    [10] BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature, 2020, 588(7836): 77-82. doi: 10.1038/s41586-020-2939-8
    [11] RAMESH S S, MA J L, LIM K M, et al. Numerical evaluation of station-keeping strategies for stratospheric balloons[J]. Aerospace Science and Technology, 2018, 80: 288-300. doi: 10.1016/j.ast.2018.07.010
    [12] JIANG Y, LV M Y, LI J. Station-keeping control design of double balloon system based on horizontal region constraints[J]. Aerospace Science and Technology, 2020, 100: 105792. doi: 10.1016/j.ast.2020.105792
    [13] 王益平, 周飞, 徐明. 临近空间浮空器区域驻留控制策略研究[J]. 中国空间科学技术, 2018, 38(1): 63-69.

    WANG Y P, ZHOU F, XU M. Research on control strategy of territory-hovering aerostat in near space[J]. Chinese Space Science and Technology, 2018, 38(1): 63-69(in Chinese).
    [14] 邓小龙, 李魁, 于春锐, 等. 准零风层新型临近空间浮空器区域驻留性能[J]. 国防科技大学学报, 2019, 41(1): 5-12.

    DENG X L, LI K, YU C R, et al. Station-keeping performance of novel near-space aerostat in quasi-zero wind layer[J]. Journal of National University of Defense Technology, 2019, 41(1): 5-12(in Chinese).
    [15] 柏方超, 杨希祥, 邓小龙, 等. 基于深度强化学习的风场中浮空器驻留控制[J]. 北京亚洲成人在线一二三四五六区学报, 2024, 50(7): 2354-2366.

    BAI F C, YANG X X, DENG X L, et al. Station keeping control for aerostat in wind fields based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(7): 2354-2366(in Chinese).
    [16] 李魁, 邓小龙, 杨希祥, 等. 基于平流层风场预测的浮空器轨迹控制[J]. 北京亚洲成人在线一二三四五六区学报, 2019, 45(5): 1008-1018.

    LI K, DENG X L, YANG X X, et al. Trajectory control of aerostat based on prediction of stratospheric wind field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1008-1018 (in Chinese).
    [17] 林康, 马云鹏, 郑泽伟, 等. 基于副气囊的平流层浮空器高度控制[J]. 北京亚洲成人在线一二三四五六区学报, 2022, 48(5): 762-770.

    LIN K, MA Y P, ZHENG Z W, et al. Height control of stratospheric aerostat based on secondary airbag[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 762-770(in Chinese).
    [18] 龙远, 邓小龙, 杨希祥, 等. 极涡风场中平流层浮空器轨迹仿真研究[J]. 计算机仿真, 2021, 38(8): 37-42.

    LONG Y, DENG X L, YANG X X, et al. Trajectory simulation of stratosphere aerostats in polar vortex wind field[J]. Computer Simulation, 2021, 38(8): 37-42(in Chinese).
    [19] 邓小龙, 丛伟轩, 李魁, 等. 风场综合利用的新型平流层浮空器轨迹设计[J]. 宇航学报, 2019, 40(7): 748-757.

    DENG X L, CONG W X, LI K, et al. Trajectory design of a novel stratospheric aerostat based on comprehensive utilization of wind fields[J]. Journal of Astronautics, 2019, 40(7): 748-757(in Chinese).
    [20] MUELLER J B, ZHAO Y J, GARRARD W L. Optimal ascent trajectories for stratospheric airships using wind energy[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1232-1245. doi: 10.2514/1.41270
    [21] 常晓飞, 白云飞, 符文星, 等. 基于平流层特殊风场的浮空器定点方案研究[J]. 西北工业大学学报, 2014, 32(1): 12-17.

    CHANG X F, BAI Y F, FU W X, et al. Research on fixed-point aerostat based on its special stratosphere wind field[J]. Journal of Northwestern Polytechnical University, 2014, 32(1): 12-17(in Chinese).
    [22] 陶梦初, 何金海, 刘毅. 平流层准零风层统计特征及准两年周期振荡对其影响分析[J]. 气候与环境研究, 2012, 17(1): 92-102.

    TAO M C, HE J H, LIU Y. Analysis of the characteristics of the stratospheric quasi-zero wind layer and the effects of the quasi-biennial oscillation on it[J]. Climatic and Environmental Research, 2012, 17(1): 92-102(in Chinese).
    [23] 胡耀月, 王东海, 吴珍珍, 等. 中国区域临近空间准零风层的观测特征[J]. 空间科学学报, 2022, 42(3): 383-395.

    HU Y Y, WANG D H, WU Z Z, et al. Analysis of the observational characteristics of the quasi-zero wind layer in the near space over China[J]. Chinese Journal of Space Science, 2022, 42(3): 383-395(in Chinese).
    [24] MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [25] MAFARJA M M, MIRJALILI S. Hybrid whale optimization algorithm with simulated annealing for feature selection[J]. Neurocomputing, 2017, 260: 302-312. doi: 10.1016/j.neucom.2017.04.053
    [26] XIONG G J, ZHANG J, SHI D Y, et al. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm[J]. Energy Conversion and Management, 2018, 174: 388-405. doi: 10.1016/j.enconman.2018.08.053
    [27] 孙琪, 于永进, 王玉彬, 等. 采用改进鲸鱼算法的配电网综合优化[J]. 电力系统及其自动化学报, 2021, 30(5): 22-29.

    SUN Q, YU Y J, WANG Y B, et al. Comprehensive optimization of distribution network with improved whale algorithm[J]. Proceedings of the Chinese Society of Universities for Electric Power System and its Automation, 2021, 30(5): 22-29(in Chinese).
    [28] 吴坤, 谭劭昌. 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020, 41(S2): 724286.

    WU K, TAN S C. Route planning of UAV based on improved whale optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724286(in Chinese).
    [29] National Oceanic and Atmospheric Administration. U. S. standard atmosphere[S]. Washington D. C. : NOAA, NASA, USAF, 1976.
  • 加载中
图(15) / 表(7)
计量
  • 文章访问数:  178
  • HTML全文浏览量:  73
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-19
  • 录用日期:  2023-11-27
  • 网络出版日期:  2023-12-20
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答