留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强噪声环境下基于MSDCNN的滚动轴承故障诊断方法

雷春丽 史佳硕 马淑珍 缪成翔 万会元 李建华

雷春丽,史佳硕,马淑珍,等. 强噪声环境下基于MSDCNN的滚动轴承故障诊断方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):2906-2915 doi: 10.13700/j.bh.1001-5965.2023.0456
引用本文: 雷春丽,史佳硕,马淑珍,等. 强噪声环境下基于MSDCNN的滚动轴承故障诊断方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):2906-2915 doi: 10.13700/j.bh.1001-5965.2023.0456
LEI C L,SHI J S,MA S Z,et al. Rolling bearing fault diagnosis method based on MSDCNN in strong noise environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2906-2915 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0456
Citation: LEI C L,SHI J S,MA S Z,et al. Rolling bearing fault diagnosis method based on MSDCNN in strong noise environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2906-2915 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0456

强噪声环境下基于MSDCNN的滚动轴承故障诊断方法

doi: 10.13700/j.bh.1001-5965.2023.0456
基金项目: 

国家自然科学基金(51465035);甘肃省自然科学基金(20JR5RA466);甘肃省教育厅研究生“创新之星”项目(2023CXZX-411);兰州理工大学红柳一流学科建设项目

详细信息
    通讯作者:

    E-mail:lclyq2004@163.com

  • 中图分类号: TH133.33

Rolling bearing fault diagnosis method based on MSDCNN in strong noise environment

Funds: 

National Natural Science Foundation of China (51465035); Natural Science Foundation of Gansu Province (20JR5RA466); Graduate Innovation Star Project of the Education Department of Gansu Province (2023CXZX-411); Hongliu First-class Disciplines Development Program of Lanzhou University of Technology

More Information
  • 摘要:

    针对传统基于深度学习的轴承故障诊断方法存在抗噪性能差、计算复杂度高和泛化性能不足的问题,提出了一种基于多尺度动态卷积神经网络(MSDCNN)的滚动轴承故障诊断方法。采用傅里叶变换将滚动轴承一维振动信号转换到频域进行表示,并通过宽卷积核进一步提取特征;提出一种多尺度动态卷积结构,利用改进的通道注意力机制,对不同大小的卷积核提取的特征信息赋予不同的权重;设计一种自校准空间注意力机制(SCSAM),将提取的特征信息输入到空间注意力机制中,捕获不同区域的重要程度;通过小卷积核进一步提取特征,利用Softmax分类器进行故障类别分类。使用2种不同数据集验证所提模型的故障诊断性能,实验结果表明:与多尺度深度卷积神经网络(MSD-CNN)、宽卷积核卷积神经网络(WKCNN)等智能模型相比,所提模型在强噪声背景下具有更高的分类精度、更好的泛化能力和更强的鲁棒性。

     

  • 图 1  改进的通道注意力机制

    Figure 1.  Improved channel attention mechanism

    图 2  自校准空间注意力机制

    Figure 2.  Self-calibrating spatial attention mechanism

    图 3  深度可分离空洞卷积神经网络

    Figure 3.  Deep separable dilated convolution neural network

    图 4  MSDCNN模型结构

    Figure 4.  MSDCNN model structure

    图 5  美国凯斯西储大学数据采集试验台

    Figure 5.  Data acquisition test bench of CWRU

    图 6  MFS机械故障仿真试验台

    Figure 6.  MFS mechanical fault simulation test bench

    图 7  ER-16K滚动轴承故障缺陷

    Figure 7.  ER-16K rolling bearing fault defects

    图 8  不同参数对模型性能的影响

    Figure 8.  Influence of different parameters on model performance

    图 9  t-SNE可视化

    Figure 9.  t-SNE visualization

    图 10  故障分类混淆矩阵

    Figure 10.  Fault classification confusion matrix

    图 11  不同模型变转速工况箱线图

    Figure 11.  Box plot of different models under variable speed conditions

    表  1  MSDCNN模型的结构参数

    Table  1.   Structure parameters of MSDCNN model

    特征层 卷积核数量 卷积核大小 输出尺寸/像素
    输入 1024×1
    Conv1 8 32 1024×8
    最大池化 512×8
    Conv2 32 5 512×32
    DSDCNN1 32 5(EDR=2) 512×32
    DSDCNN2 32 5(EDR=3) 512×32
    特征融合 512×96
    ICA 512×96
    特征融合 512×32
    最大池化 256×32
    SCSAM 256×32
    Conv3 32 5 256×32
    最大池化 128×32
    全局平均池化 1×32
    Softmax分类器 7
    下载: 导出CSV

    表  2  强噪声环境下变负载识别准确率

    Table  2.   Variable load recognition accuracy under strong noise environment %

    模型 识别准确率 均值
    A-B A-C B-A B-C C-A C-B
    本文模型 97.43 96.86 97.51 97.26 97.29 97.03 97.23
    MSD-CNN 94.57 93.68 95.05 93.63 93.77 92.69 93.90
    WKCNN 93.37 92.06 95.17 92.29 90.11 91.20 92.37
    MSACNN 92.69 91.29 92.29 93.79 94.00 93.14 92.87
    MSC-MpResCNN 96.23 95.48 96.85 96.54 96.31 95.83 96.21
    下载: 导出CSV

    表  3  强噪声环境下变转速识别准确率

    Table  3.   Variable speed recognition accuracy under strong noise environment %

    模型 识别准确率 均值
    D-E D-F E-D E-F F-D F-E
    本文模型 97.20 96.69 97.34 97.03 96.89 97.22 97.06
    MSD-CNN 93.63 91.77 94.09 93.29 92.89 93.20 93.15
    WKCNN 92.71 91.37 93.54 92.69 91.94 93.26 92.59
    MSACNN 92.23 90.74 93.03 91.94 92.40 92.28 92.10
    MSC-MpResCNN 95.25 94.54 95.74 96.20 94.46 95.17 95.23
    下载: 导出CSV

    表  4  XJTU-SY数据集早期故障样本分布

    Table  4.   Early fault sample distribution of XJTU-SY data set

    故障类型 轴承编号 总实验
    时长/min
    初始故障发
    生时间点/min
    转速/(r·min−1)
    外圈 Bearing1_1 123 77 2100
    混合故障 Bearing1_5 52 33 2100
    内圈 Bearing2_1 491 454 2250
    保持架 Bearing2_3 533 325 2250
    下载: 导出CSV

    表  5  不同模型对早期故障的识别准确率

    Table  5.   Recognition accuracy of different models forearly faults %

    模型识别准确率识别准确率均值
    外圈混合故障内圈保持架
    本文模型94.898.81009897.9
    MSD-CNN6275.210079.679.2
    WKCNN41.441.699.66261.15
    MSACNN4796.61009183.65
    MSC-MpResCNN87.29310086.291.6
    下载: 导出CSV
  • [1] LI W, ZHONG X, SHAO H D, et al. Multi-mode data augmentation and fault diagnosis of rotating machinery using modified ACGAN designed with new framework[J]. Advanced Engineering Informatics, 2022, 52: 101552. doi: 10.1016/j.aei.2022.101552
    [2] CHEN Z Y, GRYLLIAS K, LI W H. Mechanical fault diagnosis using convolutional neural networks and extreme learning machine[J]. Mechanical Systems and Signal Processing, 2019, 133: 106272. doi: 10.1016/j.ymssp.2019.106272
    [3] SONG L Y, WANG H Q, CHEN P. Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(8): 1887-1899. doi: 10.1109/TIM.2018.2806984
    [4] WANG B, LEI Y G, LI N P, et al. A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69(1): 401-412. doi: 10.1109/TR.2018.2882682
    [5] XIAO Y M, SHAO H D, HAN S Y, et al. Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27(6): 5254-5263. doi: 10.1109/TMECH.2022.3177174
    [6] CHEN Z Y, LI W H. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1693-1702. doi: 10.1109/TIM.2017.2669947
    [7] ZHAO J, YANG S P, LI Q, et al. A new bearing fault diagnosis method based on signal-to-image mapping and convolutional neural network[J]. Measurement, 2021, 176: 109088. doi: 10.1016/j.measurement.2021.109088
    [8] CHOUDHARY A, MIAN T, FATIMA S. Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images[J]. Measurement, 2021, 176: 109196. doi: 10.1016/j.measurement.2021.109196
    [9] 曲建岭, 余路, 袁涛, 等. 基于一维卷积神经网络的滚动轴承自适应故障诊断算法[J]. 仪器仪表学报, 2018, 39(7): 134-143.

    QU J L, YU L, YUAN T, et al. Adaptive fault diagnosis algorithm for rolling bearings based on one-dimensional convolutional neural network[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 134-143(in Chinese).
    [10] 袁彩艳, 孙洁娣, 温江涛, 等. 多域信息融合结合改进残差密集网络的轴承故障诊断[J]. 振动与冲击, 2022, 41(4): 200-208.

    YUAN C Y, SUN J D, WEN J T, et al. Bearing fault diagnosis based on information fusion and improved residual dense networks[J]. Journal of Vibration and Shock, 2022, 41(4): 200-208(in Chinese).
    [11] SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-v4, inception-ResNet and the impact of residual connections on learning[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 4278-4284.
    [12] 周奇才, 刘星辰, 赵炯, 等. 旋转机械一维深度卷积神经网络故障诊断研究[J]. 振动与冲击, 2018, 37(23): 31-37.

    ZHOU Q C, LIU X C, ZHAO J, et al. Fault diagnosis for rotating machinery based on 1D depth convolutional neural network[J]. Journal of Vibration and Shock, 2018, 37(23): 31-37(in Chinese).
    [13] LIU X P, XIA L J, SHI J, et al. A fault diagnosis method of rolling bearing based on improved recurrence plot and convolutional neural network[J]. IEEE Sensors Journal, 2023, 23(10): 10767-10775. doi: 10.1109/JSEN.2023.3265409
    [14] AN Z H, LI S M, WANG J R, et al. Generalization of deep neural network for bearing fault diagnosis under different working conditions using multiple kernel method[J]. Neurocomputing, 2019, 352: 42-53. doi: 10.1016/j.neucom.2019.04.010
    [15] 张玺君, 尚继洋, 余光杰, 等. 基于注意力的多尺度卷积神经网络轴承故障诊断[J]. 吉林大学学报(工学版), 2024, 54(10): 3009-3017.

    ZHANG X J, SHANG J Y, YU G J, et al. Bearing fault diagnosis based on attention for multi-scale convolutional neural network[J]. Journal of Jilin University (Engineering and Technology Edition), 2024, 54(10): 3009-3017(in Chinese).
    [16] 卞景艺, 刘秀丽, 徐小力, 等. 基于多尺度深度卷积神经网络的故障诊断方法[J]. 振动与冲击, 2021, 40(18): 204-211.

    BIAN J Y, LIU X L, XU X L, et al. Fault diagnosis method based on a multi-scale deep convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40(18): 204-211(in Chinese).
    [17] PENG D D, WANG H, LIU Z L, et al. Multibranch and multiscale CNN for fault diagnosis of wheelset bearings under strong noise and variable load condition[J]. IEEE Transactions on Industrial Informatics, 2020, 16(7): 4949-4960.
    [18] WANG Y, NING D J, FENG S L. A novel capsule network based on wide convolution and multi-scale convolution for fault diagnosis[J]. Applied Sciences, 2020, 10(10): 3659. doi: 10.3390/app10103659
    [19] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE/CVFConference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7132-7141.
    [20] SMITH W A, RANDALL R B. Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100-131.
    [21] SHAO Z H, LI W Q, XIANG H, et al. Fault diagnosis method and application based on multi-scale neural network and data enhancement for strong noise[J]. Journal of Vibration Engineering & Technologies, 2024, 12(1): 295-308.
    [22] SONG X D, CONG Y Y, SONG Y F, et al. A bearing fault diagnosis model based on CNN with wide convolution kernels[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(8): 4041-4056. doi: 10.1007/s12652-021-03177-x
    [23] 丁雪, 邓艾东, 李晶, 等. 基于多尺度和注意力机制的滚动轴承故障诊断[J]. 东南大学学报(自然科学版), 2022, 52(1): 172-178.

    DING X, DENG A D, LI J, et al. Fault diagnosis of rolling bearing based on multi-scale and attention mechanism[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(1): 172-178(in Chinese).
    [24] CHAO Z Q, HAN T. A novel convolutional neural network with multiscale cascade midpoint residual for fault diagnosis of rolling bearings[J]. Neurocomputing, 2022, 506: 213-227. doi: 10.1016/j.neucom.2022.07.022
    [25] BELKINA A C, CICCOLELLA C O, ANNO R, et al. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets[J]. Nature Communications, 2019, 10(1): 5415. doi: 10.1038/s41467-019-13055-y
    [26] 黄如意, 李霁蒲, 王震, 等. 基于多任务学习的装备智能诊断与寿命预测方法[J]. 中国科学: 技术科学, 2022, 52(1): 123-137.

    HUANG R Y, LI J P, WANG Z, et al. Intelligent diagnostic and prognostic method based on multitask learning for industrial equipment[J]. Scientia Sinica (Technologica), 2022, 52(1): 123-137(in Chinese).
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  27
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-12
  • 录用日期:  2023-07-28
  • 网络出版日期:  2023-08-23
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答