留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向单子集焦元冲突证据的融合方法

周诚 徐达 曹振地

周诚,徐达,曹振地. 面向单子集焦元冲突证据的融合方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):3062-3070 doi: 10.13700/j.bh.1001-5965.2023.0449
引用本文: 周诚,徐达,曹振地. 面向单子集焦元冲突证据的融合方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):3062-3070 doi: 10.13700/j.bh.1001-5965.2023.0449
ZHOU C,XU D,CAO Z D. Conflict evidence fusion method for single-subset focal elements[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3062-3070 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0449
Citation: ZHOU C,XU D,CAO Z D. Conflict evidence fusion method for single-subset focal elements[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3062-3070 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0449

面向单子集焦元冲突证据的融合方法

doi: 10.13700/j.bh.1001-5965.2023.0449
详细信息
    通讯作者:

    E-mail:ljzjbxy2022@163.com

  • 中图分类号: TP301.6

Conflict evidence fusion method for single-subset focal elements

More Information
  • 摘要:

    为有效融合多源数据以充分利用多源数据信息,针对只包含单子集焦元证据的多源数据融合时存在证据冲突的问题,提出了面向单子集焦元冲突证据的融合方法。综合考虑证据间的关联性和证据本身的不确定性2个方面,引入夹角余弦度量证据间的冲突程度来修正冲突系数和Jousselme距离的不足,利用冲突系数和信息熵的组合构造判断规则对证据进行分组,结合证据的支持度和可信度共同修正证据,进而实现单子集焦元冲突证据的有效融合。以4种典型冲突悖论为数值案例,验证了所提方法有效可行,且融合性能优于传统证据融合方法。

     

  • 图 1  单子集焦元冲突证据融合方法流程

    Figure 1.  Flow chart of conflict evidence fusion method for single-subset focal elements

    图 2  证据融合结果

    Figure 2.  Evidence fusion results

    表  1  不同组证据的BPA

    Table  1.   BPA of different sets of evidence

    组号 BPA
    1 $\begin{gathered} {m_1}({A_1}) = {m_1}({A_2}) = 0.5 \\ {m_2}({A_1}) = {m_2}({A_2}) = 0.5 \\ \end{gathered} $
    2 $\begin{gathered} {m_1}({A_1}) = {m_1}({A_2}) = 0.5 \\ {m_2}({A_3}) = {m_2}({A_4}) = 0.5 \\ \end{gathered} $
    3 $\begin{gathered} {m_1}({A_1}) = {m_1}({A_2}) = {m_1}({A_3}) = {1}/{3} \\ {m_2}({A_4}) = {m_2}({A_5}) = {m_2}({A_6}) = {1}/{3} \\ \end{gathered} $
    下载: 导出CSV

    表  2  4种典型高冲突证据融合结果

    Table  2.   Fusion results of four kinds of typical high conflict evidence

    悖论
    类型
    融合方法 基本概率赋值 目标
    命题
    命题A 命题B 命题C 识别框架$\varTheta $
    完全冲
    突悖论
    Yager[4] 0 0 0 1 $\varTheta $
    Murphy[14] 0.8375 0.1625 0 0 A
    Deng[15] 0.9986 0.0014 0 0 A
    Chen[17] 0.9986 0.0014 0 0 A
    Ye[19] 0.9250 0.0750 0 0 A
    Yuan[23] 0.9986 0.0014 0 0 A
    IDS 0.9999 0.0001 0 0 A
    0信任
    悖论
    DS[2] 0 0.6316 0.3684 0 B
    Yager[4] 0 0.0180 0.0105 0.9895 $\varTheta $
    Murphy[14] 0.3500 0.5224 0.1276 0 B
    Deng[15] 0.5816 0.2439 0.1745 0 A
    Chen[17] 0.6195 0.2010 0.1795 0 A
    Ye[19] 0.6220 0.1974 0.1805 0 A
    Yuan[23] 0.7319 0.0790 0.1891 0 A
    IDS 0.7319 0.0790 0.1891 0 A
    1信任
    悖论
    DS[2] 0 1 0 0 B
    Yager[4] 0 0.01 0 1 $\varTheta $
    Murphy[14] 0.4880 0.0241 0.4880 0 A/C
    Deng[15] 0.4880 0.0241 0.4880 0 A/C
    Chen[17] 0.4880 0.0241 0.4880 0 A/C
    Ye[19] 0.4880 0.0241 0.4880 0 A/C
    Yuan[23] 0.4880 0.0241 0.4880 0 A/C
    IDS 0.4880 0.0241 0.4880 0 A/C
    高冲突
    悖论
    DS[2] 0 0.9153 0.0847 0 B
    Yager[4] 0 0.0002 0 1 $\varTheta $
    Murphy[14] 0.8389 0.1502 0.0099 0.0010 A
    Deng[15] 0.9524 0.0389 0.0078 0.0009 A
    Chen[17] 0.9623 0.0289 0.0078 0.0010 A
    Ye[19] 0.9509 0.0405 0.0077 0.0009 A
    Yuan[23] 0.9610 0.0268 0.0105 0.0017 A
    IDS 0.9959 0.0023 0.0017 0.0001 A
    下载: 导出CSV
  • [1] PARAI M, SRIMANI S, GHOSH K, et al. Multi-source data fusion technique for parametric fault diagnosis in analog circuits[J]. Integration, 2022, 84: 92-101. doi: 10.1016/j.vlsi.2022.01.005
    [2] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339. doi: 10.1214/aoms/1177698950
    [3] ZHAO Y X, JIA R F, SHI P. A novel combination method for conflicting evidence based on inconsistent measurements[J]. Information Sciences, 2016, 367: 125-142.
    [4] YAGER R R. On the Dempster-Shafer framework and new combination rules[J]. Information Sciences, 1987, 41(2): 93-137. doi: 10.1016/0020-0255(87)90007-7
    [5] SMETS P. Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[J]. International Journal of Approximate Reasoning, 1993, 9(1): 1-35. doi: 10.1016/0888-613X(93)90005-X
    [6] 孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000, 28(8): 117-119. doi: 10.3321/j.issn:0372-2112.2000.08.036

    SUN Q, YE X Q, GU W K. A new combination rules of evidence theory[J]. Acta Electronica Sinica, 2000, 28(8): 117-119(in Chinese). doi: 10.3321/j.issn:0372-2112.2000.08.036
    [7] SMETS P. Belief functions on real numbers[J]. International Journal of Approximate Reasoning, 2005, 40(3): 181-223. doi: 10.1016/j.ijar.2005.04.001
    [8] 邓勇, 施文康, 朱振福. 一种有效处理冲突证据的组合方法[J]. 红外与毫米波学报, 2004, 23(1): 27-32. doi: 10.3321/j.issn:1001-9014.2004.01.006

    DENG Y, SHI W K, ZHU Z F. Efficient combination approach of conflict evidence[J]. Journal Infrared Millimeter and Waves, 2004, 23(1): 27-32(in Chinese). doi: 10.3321/j.issn:1001-9014.2004.01.006
    [9] LIN Z, XIE J Y. Research on improved evidence theory based on multi-sensor information fusion[J]. Scientific Reports, 2021, 11(1): 9267. doi: 10.1038/s41598-021-88814-3
    [10] 李弼程, 王波, 魏俊, 等. 一种有效的证据理论合成公式[J]. 数据采集与处理, 2002, 17(1): 33-36. doi: 10.3969/j.issn.1004-9037.2002.01.008

    LI B C, WANG B, WEI J, et al. An effective formula for synthesizing evidence theory[J]. Journal of Data Acquisition and Processing, 2002, 17(1): 33-36(in Chinese). doi: 10.3969/j.issn.1004-9037.2002.01.008
    [11] 韩德强, 韩崇昭, 邓勇, 等. 基于证据方差的加权证据组合[J]. 电子学报, 2011, 39(S1): 153-157.

    HAN D Q, HAN C Z, DENG Y, et al. Weighted evidence combination based on evidence variance[J]. Acta Electronica Sinica, 2011, 39(S1): 153-157(in Chinese).
    [12] LI Y B, CHEN J, YE F, et al. The improvement of DS evidence theory and its application in IR/MMW target recognition[J]. Journal of Sensors, 2016, 2016: 1903792.
    [13] HAEIVIVI R. Are alternatives to Dempster’s rule of combination real alternative?: comments on “about the belief function combination and the conflict management problem”[J]. Information Fusion, 2002, 3(3): 237-239. doi: 10.1016/S1566-2535(02)00076-3
    [14] MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1): 1-9. doi: 10.1016/S0167-9236(99)00084-6
    [15] DENG Y, SHI W K, ZHU Z F, et al. Combining belief functions based on distance of evidence[J]. Decision Support Systems, 2004, 38(3): 489-493. doi: 10.1016/j.dss.2004.04.015
    [16] YANG Y, HAN D Q, HAN C Z. Discounted combination of unreliable evidence using degree of disagreement[J]. International Journal of Approximate Reasoning, 2013, 54(8): 1197-1216. doi: 10.1016/j.ijar.2013.04.002
    [17] CHEN B C, TAO X, YANG M R, et al. A saliency map fusion method based on weighted DS evidence theory[J]. IEEE Access, 2018, 6: 27346-27355. doi: 10.1109/ACCESS.2018.2835826
    [18] 李捷, 杨雪洲, 周亮. 基于改进DS理论多周期数据融合的目标识别方法[J]. 火力与指挥控制, 2019, 44(7): 43-48. doi: 10.3969/j.issn.1002-0640.2019.07.009

    LI J, YANG X Z, ZHOU L. Research on target identification based on improved DS evidence of multi-period fusion method[J]. Fire Control & Command Control, 2019, 44(7): 43-48(in Chinese). doi: 10.3969/j.issn.1002-0640.2019.07.009
    [19] YE F, CHEN J, LI Y B. Improvement of DS evidence theory for multi-sensor conflicting information[J]. Symmetry, 2017, 9(5): 69. doi: 10.3390/sym9050069
    [20] LI S B, LIU G K, TANG X H, et al. An ensemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis[J]. Sensors, 2017, 17(8): 1729. doi: 10.3390/s17081729
    [21] 雷震烁, 刘松涛, 葛杨, 等. 基于平均证据和焦元距离的高冲突证据融合方法[J]. 电光与控制, 2021, 28(4): 6-10.

    LEI Z S, LIU S T, GE Y, et al. High conflict evidence fusion method based on average evidence and focal distance[J]. Electronics Optics & Control, 2021, 28(4): 6-10(in Chinese).
    [22] 张欢, 陆见光, 唐向红. 面向冲突证据的改进DS证据理论算法[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(3): 616-623.

    ZHANG H, LU J G, TANG X H. Improved DS evidence theory algorithm for conflict evidence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 616-623(in Chinese).
    [23] YUAN K J, XIAO F Y, FEI L G, et al. Conflict management based on belief function entropy in sensor fusion[J]. SpringerPlus, 2016, 5(1): 638. doi: 10.1186/s40064-016-2205-6
    [24] XIAO F Y. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy[J]. Information Fusion, 2019, 46: 23-32. doi: 10.1016/j.inffus.2018.04.003
    [25] 应文健, 程雨森, 王旋, 等. 基于研制阶段数据融合的舰炮制导弹药测试性评估方法[J]. 系统工程与电子技术, 2024, 46(8): 2730-2737.

    YING W J, CHENG Y S, WANG X, et al. Testability evaluation method of naval gun guided ammunition based on data fusion in development stage[J]. Systems Engineering and Electronics, 2024, 46(8): 2730-2737(in Chinese).
    [26] 陶洋, 祝小钧, 杨柳. 基于皮尔逊相关系数和信息熵的多传感器数据融合[J]. 小型微型计算机系统, 2023, 44(5): 1075-1080.

    TAO Y, ZHU X J, YANG L. Multi-sensor data fusion based on Pearson coefficient and information entropy[J]. Journal of Chinese Computer Systems, 2023, 44(5): 1075-1080(in Chinese).
    [27] JOUSSELME A L, GRENIER D, BOSSÉ É. A new distance between two bodies of evidence[J]. Information Fusion, 2001, 2(2): 91-101. doi: 10.1016/S1566-2535(01)00026-4
    [28] KHAN M N, ANWAR S. Paradox elimination in Dempster-Shafer combination rule with novel entropy function: application in decision-level multi-sensor fusion[J]. Sensors, 2019, 19(21): 4810. doi: 10.3390/s19214810
    [29] SHANNON C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55. doi: 10.1145/584091.584093
    [30] DENG Y. Deng entropy[J]. Chaos, Solitons & Fractals, 2016, 91(3): 549-553.
    [31] DENG Y. Deng entropy: a generalized Shannon entropy to measure uncertainty[EB/OL]. (2015-02-24)[2023-07-07]. http://vixra.org/abs/1502.0222.
    [32] GUO X Z, XIN X L. Partial entropy and relative entropy of fuzzy sets[J]. Fuzzy System & Mathematics, 2005, 19(2): 97-102.
  • 加载中
图(2) / 表(2)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  70
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-10
  • 录用日期:  2023-09-28
  • 网络出版日期:  2023-10-11
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答