-
摘要:
为有效融合多源数据以充分利用多源数据信息,针对只包含单子集焦元证据的多源数据融合时存在证据冲突的问题,提出了面向单子集焦元冲突证据的融合方法。综合考虑证据间的关联性和证据本身的不确定性2个方面,引入夹角余弦度量证据间的冲突程度来修正冲突系数和Jousselme距离的不足,利用冲突系数和信息熵的组合构造判断规则对证据进行分组,结合证据的支持度和可信度共同修正证据,进而实现单子集焦元冲突证据的有效融合。以4种典型冲突悖论为数值案例,验证了所提方法有效可行,且融合性能优于传统证据融合方法。
Abstract:To effectively fuse multi-source data and fully utilize multi-source data information, a conflict evidence fusion method for single-subset focal elements was proposed in response to evidence conflicts in fusion of multi-source data that only contains single-subset focal element evidence. Comprehensively considering the correlation between evidence and the uncertainty of the evidence itself, this study introduced the cosine of the included angle to measure the degree of conflict between evidence for correcting the deficiency of conflict coefficient and Jousselme distance. The combination of conflict coefficient and information entropy was used to construct judgment rules for evidence grouping, and then the evidence was modified with its support and credibility, so as to achieve effective fusion of single-subset focal element conflict evidence. With four typical conflict paradoxes as numerical cases, the proposed method is verified to be effective and feasible, and its fusion performance is better than that of the traditional evidence fusion method.
-
表 1 不同组证据的BPA
Table 1. BPA of different sets of evidence
组号 BPA 1 $\begin{gathered} {m_1}({A_1}) = {m_1}({A_2}) = 0.5 \\ {m_2}({A_1}) = {m_2}({A_2}) = 0.5 \\ \end{gathered} $ 2 $\begin{gathered} {m_1}({A_1}) = {m_1}({A_2}) = 0.5 \\ {m_2}({A_3}) = {m_2}({A_4}) = 0.5 \\ \end{gathered} $ 3 $\begin{gathered} {m_1}({A_1}) = {m_1}({A_2}) = {m_1}({A_3}) = {1}/{3} \\ {m_2}({A_4}) = {m_2}({A_5}) = {m_2}({A_6}) = {1}/{3} \\ \end{gathered} $ 表 2 4种典型高冲突证据融合结果
Table 2. Fusion results of four kinds of typical high conflict evidence
悖论
类型融合方法 基本概率赋值 目标
命题命题A 命题B 命题C 识别框架$\varTheta $ 完全冲
突悖论Yager[4] 0 0 0 1 $\varTheta $ Murphy[14] 0.8375 0.1625 0 0 A Deng[15] 0.9986 0.0014 0 0 A Chen[17] 0.9986 0.0014 0 0 A Ye[19] 0.9250 0.0750 0 0 A Yuan[23] 0.9986 0.0014 0 0 A IDS 0.9999 0.0001 0 0 A 0信任
悖论DS[2] 0 0.6316 0.3684 0 B Yager[4] 0 0.0180 0.0105 0.9895 $\varTheta $ Murphy[14] 0.3500 0.5224 0.1276 0 B Deng[15] 0.5816 0.2439 0.1745 0 A Chen[17] 0.6195 0.2010 0.1795 0 A Ye[19] 0.6220 0.1974 0.1805 0 A Yuan[23] 0.7319 0.0790 0.1891 0 A IDS 0.7319 0.0790 0.1891 0 A 1信任
悖论DS[2] 0 1 0 0 B Yager[4] 0 0.01 0 1 $\varTheta $ Murphy[14] 0.4880 0.0241 0.4880 0 A/C Deng[15] 0.4880 0.0241 0.4880 0 A/C Chen[17] 0.4880 0.0241 0.4880 0 A/C Ye[19] 0.4880 0.0241 0.4880 0 A/C Yuan[23] 0.4880 0.0241 0.4880 0 A/C IDS 0.4880 0.0241 0.4880 0 A/C 高冲突
悖论DS[2] 0 0.9153 0.0847 0 B Yager[4] 0 0.0002 0 1 $\varTheta $ Murphy[14] 0.8389 0.1502 0.0099 0.0010 A Deng[15] 0.9524 0.0389 0.0078 0.0009 A Chen[17] 0.9623 0.0289 0.0078 0.0010 A Ye[19] 0.9509 0.0405 0.0077 0.0009 A Yuan[23] 0.9610 0.0268 0.0105 0.0017 A IDS 0.9959 0.0023 0.0017 0.0001 A -
[1] PARAI M, SRIMANI S, GHOSH K, et al. Multi-source data fusion technique for parametric fault diagnosis in analog circuits[J]. Integration, 2022, 84: 92-101. doi: 10.1016/j.vlsi.2022.01.005 [2] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2): 325-339. doi: 10.1214/aoms/1177698950 [3] ZHAO Y X, JIA R F, SHI P. A novel combination method for conflicting evidence based on inconsistent measurements[J]. Information Sciences, 2016, 367: 125-142. [4] YAGER R R. On the Dempster-Shafer framework and new combination rules[J]. Information Sciences, 1987, 41(2): 93-137. doi: 10.1016/0020-0255(87)90007-7 [5] SMETS P. Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem[J]. International Journal of Approximate Reasoning, 1993, 9(1): 1-35. doi: 10.1016/0888-613X(93)90005-X [6] 孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000, 28(8): 117-119. doi: 10.3321/j.issn:0372-2112.2000.08.036SUN Q, YE X Q, GU W K. A new combination rules of evidence theory[J]. Acta Electronica Sinica, 2000, 28(8): 117-119(in Chinese). doi: 10.3321/j.issn:0372-2112.2000.08.036 [7] SMETS P. Belief functions on real numbers[J]. International Journal of Approximate Reasoning, 2005, 40(3): 181-223. doi: 10.1016/j.ijar.2005.04.001 [8] 邓勇, 施文康, 朱振福. 一种有效处理冲突证据的组合方法[J]. 红外与毫米波学报, 2004, 23(1): 27-32. doi: 10.3321/j.issn:1001-9014.2004.01.006DENG Y, SHI W K, ZHU Z F. Efficient combination approach of conflict evidence[J]. Journal Infrared Millimeter and Waves, 2004, 23(1): 27-32(in Chinese). doi: 10.3321/j.issn:1001-9014.2004.01.006 [9] LIN Z, XIE J Y. Research on improved evidence theory based on multi-sensor information fusion[J]. Scientific Reports, 2021, 11(1): 9267. doi: 10.1038/s41598-021-88814-3 [10] 李弼程, 王波, 魏俊, 等. 一种有效的证据理论合成公式[J]. 数据采集与处理, 2002, 17(1): 33-36. doi: 10.3969/j.issn.1004-9037.2002.01.008LI B C, WANG B, WEI J, et al. An effective formula for synthesizing evidence theory[J]. Journal of Data Acquisition and Processing, 2002, 17(1): 33-36(in Chinese). doi: 10.3969/j.issn.1004-9037.2002.01.008 [11] 韩德强, 韩崇昭, 邓勇, 等. 基于证据方差的加权证据组合[J]. 电子学报, 2011, 39(S1): 153-157.HAN D Q, HAN C Z, DENG Y, et al. Weighted evidence combination based on evidence variance[J]. Acta Electronica Sinica, 2011, 39(S1): 153-157(in Chinese). [12] LI Y B, CHEN J, YE F, et al. The improvement of DS evidence theory and its application in IR/MMW target recognition[J]. Journal of Sensors, 2016, 2016: 1903792. [13] HAEIVIVI R. Are alternatives to Dempster’s rule of combination real alternative?: comments on “about the belief function combination and the conflict management problem”[J]. Information Fusion, 2002, 3(3): 237-239. doi: 10.1016/S1566-2535(02)00076-3 [14] MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1): 1-9. doi: 10.1016/S0167-9236(99)00084-6 [15] DENG Y, SHI W K, ZHU Z F, et al. Combining belief functions based on distance of evidence[J]. Decision Support Systems, 2004, 38(3): 489-493. doi: 10.1016/j.dss.2004.04.015 [16] YANG Y, HAN D Q, HAN C Z. Discounted combination of unreliable evidence using degree of disagreement[J]. International Journal of Approximate Reasoning, 2013, 54(8): 1197-1216. doi: 10.1016/j.ijar.2013.04.002 [17] CHEN B C, TAO X, YANG M R, et al. A saliency map fusion method based on weighted DS evidence theory[J]. IEEE Access, 2018, 6: 27346-27355. doi: 10.1109/ACCESS.2018.2835826 [18] 李捷, 杨雪洲, 周亮. 基于改进DS理论多周期数据融合的目标识别方法[J]. 火力与指挥控制, 2019, 44(7): 43-48. doi: 10.3969/j.issn.1002-0640.2019.07.009LI J, YANG X Z, ZHOU L. Research on target identification based on improved DS evidence of multi-period fusion method[J]. Fire Control & Command Control, 2019, 44(7): 43-48(in Chinese). doi: 10.3969/j.issn.1002-0640.2019.07.009 [19] YE F, CHEN J, LI Y B. Improvement of DS evidence theory for multi-sensor conflicting information[J]. Symmetry, 2017, 9(5): 69. doi: 10.3390/sym9050069 [20] LI S B, LIU G K, TANG X H, et al. An ensemble deep convolutional neural network model with improved D-S evidence fusion for bearing fault diagnosis[J]. Sensors, 2017, 17(8): 1729. doi: 10.3390/s17081729 [21] 雷震烁, 刘松涛, 葛杨, 等. 基于平均证据和焦元距离的高冲突证据融合方法[J]. 电光与控制, 2021, 28(4): 6-10.LEI Z S, LIU S T, GE Y, et al. High conflict evidence fusion method based on average evidence and focal distance[J]. Electronics Optics & Control, 2021, 28(4): 6-10(in Chinese). [22] 张欢, 陆见光, 唐向红. 面向冲突证据的改进DS证据理论算法[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(3): 616-623.ZHANG H, LU J G, TANG X H. Improved DS evidence theory algorithm for conflict evidence[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 616-623(in Chinese). [23] YUAN K J, XIAO F Y, FEI L G, et al. Conflict management based on belief function entropy in sensor fusion[J]. SpringerPlus, 2016, 5(1): 638. doi: 10.1186/s40064-016-2205-6 [24] XIAO F Y. Multi-sensor data fusion based on the belief divergence measure of evidences and the belief entropy[J]. Information Fusion, 2019, 46: 23-32. doi: 10.1016/j.inffus.2018.04.003 [25] 应文健, 程雨森, 王旋, 等. 基于研制阶段数据融合的舰炮制导弹药测试性评估方法[J]. 系统工程与电子技术, 2024, 46(8): 2730-2737.YING W J, CHENG Y S, WANG X, et al. Testability evaluation method of naval gun guided ammunition based on data fusion in development stage[J]. Systems Engineering and Electronics, 2024, 46(8): 2730-2737(in Chinese). [26] 陶洋, 祝小钧, 杨柳. 基于皮尔逊相关系数和信息熵的多传感器数据融合[J]. 小型微型计算机系统, 2023, 44(5): 1075-1080.TAO Y, ZHU X J, YANG L. Multi-sensor data fusion based on Pearson coefficient and information entropy[J]. Journal of Chinese Computer Systems, 2023, 44(5): 1075-1080(in Chinese). [27] JOUSSELME A L, GRENIER D, BOSSÉ É. A new distance between two bodies of evidence[J]. Information Fusion, 2001, 2(2): 91-101. doi: 10.1016/S1566-2535(01)00026-4 [28] KHAN M N, ANWAR S. Paradox elimination in Dempster-Shafer combination rule with novel entropy function: application in decision-level multi-sensor fusion[J]. Sensors, 2019, 19(21): 4810. doi: 10.3390/s19214810 [29] SHANNON C E. A mathematical theory of communication[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2001, 5(1): 3-55. doi: 10.1145/584091.584093 [30] DENG Y. Deng entropy[J]. Chaos, Solitons & Fractals, 2016, 91(3): 549-553. [31] DENG Y. Deng entropy: a generalized Shannon entropy to measure uncertainty[EB/OL]. (2015-02-24)[2023-07-07]. http://vixra.org/abs/1502.0222. [32] GUO X Z, XIN X L. Partial entropy and relative entropy of fuzzy sets[J]. Fuzzy System & Mathematics, 2005, 19(2): 97-102. -


下载: