留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧燃比对自燃推进剂模型火箭发动机燃烧稳定性的影响

任永杰 徐伯起 楚威 郭康康 仝毅恒 聂万胜

任永杰,徐伯起,楚威,等. 氧燃比对自燃推进剂模型火箭发动机燃烧稳定性的影响[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):3030-3038 doi: 10.13700/j.bh.1001-5965.2023.0444
引用本文: 任永杰,徐伯起,楚威,等. 氧燃比对自燃推进剂模型火箭发动机燃烧稳定性的影响[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):3030-3038 doi: 10.13700/j.bh.1001-5965.2023.0444
REN Y J,XU B Q,CHU W,et al. Effects of oxygen-fuel ratio on combustion stability of a model rocket engine with hypergolic propellant[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3030-3038 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0444
Citation: REN Y J,XU B Q,CHU W,et al. Effects of oxygen-fuel ratio on combustion stability of a model rocket engine with hypergolic propellant[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3030-3038 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0444

氧燃比对自燃推进剂模型火箭发动机燃烧稳定性的影响

doi: 10.13700/j.bh.1001-5965.2023.0444
基金项目: 

国家科学自然基金(12002386)

详细信息
    通讯作者:

    E-mail:guokangkang@sjtu.edu.cn

  • 中图分类号: V434+.3

Effects of oxygen-fuel ratio on combustion stability of a model rocket engine with hypergolic propellant

Funds: 

National Natural Science Foundation of China (12002386)

More Information
  • 摘要:

    为研究氧燃比(O/F)对自燃推进剂模型火箭发动机燃烧稳定性的影响,在液/液双旋流矩形模型发动机中开展不同氧燃比条件下的试验,采用高频压力传感器和光电倍增管(PMT)同步捕捉了燃烧室压力振荡和CH*表征的释热脉动,获得了氧燃比对燃烧稳定性的影响规律。结果表明:点火后燃料集液腔出现了41 Hz的低频脉动,并在关机过程中诱发了燃烧室同步低频振荡。氧燃比从0.933~1.789增长的过程中,燃烧室经历了稳定、轻微不稳定、一阶横向不稳定和二阶横向不稳定的转换过程,在二阶模态下压力振荡幅值仅为平均室压的4.69%。结合光电倍增管信号,发现燃烧不稳定越剧烈压力和释热信号的耦合就越明显。基于试验的瑞利指数分析表明:一阶横向模态下燃烧不稳定的驱动源主要位于燃烧室两侧,燃烧室中间则呈抑制特性;燃烧不稳定的产生可能和推进剂与燃烧室壁面的相互作用有关。

     

  • 图 1  模型发动机试验系统及热试车

    Figure 1.  Schematic of the model engine experiment system and diagram of hot-fire test

    图 2  模型发动机诊断装置和关键尺寸

    Figure 2.  Configuration of model engine diagnostic sensors and key geometric parameters

    图 3  燃烧室横向空间模态振型

    Figure 3.  Transverse spatial mode shapes of combustion chamber

    图 4  Test 4热试车过程典型信号

    Figure 4.  Typical signals during hot-fire Test 4

    图 5  Probe 1监测点热试车压力振荡细节(Test 3)

    Figure 5.  Detailed pressure oscillations of Probe 1 during hot-fire Test 3

    图 6  典型压力信号及其PSD分析

    Figure 6.  Typical pressure signals and PSD analysis

    图 7  氧燃比对压力振荡模态和幅值的影响(Test 2~Test 5, Probe 1)

    Figure 7.  Effects of O/F ratio on mode and amplitude of pressure oscillation at Probe 1 in Test 2~Test 5

    图 8  Test 4压力模态切换及STFT分析

    Figure 8.  Shift of pressure mode and STFT analysis of Test 4

    图 9  压力和CH*发光强度振荡特性和PMT信号PSD分析

    Figure 9.  Pressure and CH* luminescence intensity oscillations and PSD analysis of PMT signals

    图 10  Test 3 PMT信号振荡特性及瑞利指数分布

    Figure 10.  Pulsation of PMT signals and distribution of Rayleigh index of test 3

    表  1  试验结果总结

    Table  1.   Summary of experimental results

    试验
    编号
    $ \mathop {\dot m}\nolimits_{\mathrm{F}} /\left({\mathrm{g}} \cdot {{\mathrm{s}}^{ - 1}} \right)$ $ \mathop {\dot m}\nolimits_{\mathrm{O}} /\left({\mathrm{g}} \cdot {{\mathrm{s}}^{ - 1}} \right)$ Pc/MPa O/F $ \left(\dfrac{P'}{P_{\mathrm{c}}}\right)\bigg/ $% f /Hz 结果
    1 231.5 216.1 0.73 0.933 5.62 1981 稳定
    2 188.7 248.8 0.75 1.318 7.85 2363 轻微
    3 183.8 270.0 0.80 1.469 12.42 2381 1W模态
    4 181.3 291.5 0.82 1.608 4.88 2409 1W-2W模态
    5 173.6 310.5 0.86 1.789 4.69 4628 2W模态
    下载: 导出CSV
  • [1] YANG V, ANDERSON W E. Liquid rocket engine combustion instability[M]. Reston: AIAA, 1995.
    [2] CAO P B. Experimental study on the unsteady spray combustion process of a liquid oxygen/methane swirl coaxial injector[J]. 2021, 6(40): 26191-26200.
    [3] 冯伟, 聂万胜, 李斌, 等. 模型燃烧室内不稳定燃烧发展过程的数值分析[J]. 北京亚洲成人在线一二三四五六区学报, 2016, 42(6): 1195-1202.

    FENG W, NIE W S, LI B, et al. Numerical analysis of unstable combustion developing process in model combustor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1195-1202(in Chinese).
    [4] YU Y C, SISCO J C, ROSEN S, et al. Spontaneous longitudinal combustion instability in a continuously-variable resonance combustor[J]. Journal of Propulsion and Power, 2012, 28(5): 876-887. doi: 10.2514/1.B34308
    [5] SMITH R, XIA G P, ANDERSON W, et al. Extraction of combustion instability mechanisms from detailed computational simulations[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston : AIAA, 2010.
    [6] FREZZOTTI M L, NASUTI F, HUANG C, et al. Extraction of response function from numerical simulations and their use for longitudinal combustion intsbility modeling[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
    [7] GEJJI R, ANDERSON W E, AUSTIN B L. Transverse combustion instabilities in a high pressure multi-element combustor[C]//Proceedings of the AIAA Propulsion and Energy. Reston: AIAA, 2019.
    [8] GEJJI R, LEMCHERFI A I, STRELAU R, et al. Combustion response of shear coaxial injectors to transverse combustion instabilities[C]//Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020.
    [9] KASTHURI P, PAWAR S A, GEJJI R, et al. Coupled interaction between acoustics and unsteady flame dynamics during the transition to thermoacoustic instability in a multi-element rocket combustor[J]. Combustion and Flame, 2022, 240: 112047. doi: 10.1016/j.combustflame.2022.112047
    [10] Rayleigh. The explanation of certain acoustical phenomena1[J]. Nature, 1878, 18(455): 319-321. doi: 10.1038/018319a0
    [11] LUBARSKY E, HADJIPANAYIS M, SHCHERBIK D, et al. Control of tangential combustion instability by asymmetric baffle [C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008.
    [12] KOBAYASHI T, MURAYAMA S, HACHIJO T, et al. Early detection of thermoacoustic combustion instability using a methodology combining complex networks and machine learning[J]. Physical Review Applied, 2019, 11(6): 064034. doi: 10.1103/PhysRevApplied.11.064034
    [13] ARMBRUSTER W, HARDI J, OSCHWALD M. Impact of shear-coaxial injector hydrodynamics on high-frequency combustion instabilities in a representative cryogenic rocket engine[J]. International Journal of Spray and Combustion Dynamics, 2022, 14(1-2): 118-130. doi: 10.1177/17568277221093848
    [14] AHN K, CHOI H S. Combustion dynamics of swirl coaxial injectors in fuel-rich combustion[J]. Journal of Propulsion and Power, 2012, 28(6): 1359-1367. doi: 10.2514/1.B34448
    [15] GRÖNING S, HARDI J S, SUSLOV D, et al. Injector-driven combustion instabilities in a hydrogen/oxygen rocket combustor[J]. Journal of Propulsion and Power, 2016, 32(3): 560-573. doi: 10.2514/1.B35768
    [16] GRÖNING S, HARDI J, SUSLOV D, et al. Influence of hydrogen temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen[J]. CEAS Space Journal, 2017, 9(1): 59-76. doi: 10.1007/s12567-016-0130-8
    [17] WIERMAN M, NUGENT N, ANDERSON W. Combustion response of a LOX/LCH4 element to transverse instabilities[C]//Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011.
    [18] BUSCHHAGEN T, GEJJI R, PHILO J, et al. Self-excited transverse combustion instabilities in a high pressure lean premixed jet flame[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5181-5188. doi: 10.1016/j.proci.2018.07.086
    [19] 严宇, 胡洪波, 洪流, 等. 自燃推进剂旋转爆震燃烧实验研究[J]. 推进技术, 2018, 39(9): 1986-1993.

    YAN Y, HU H B, HONG L, et al. Experimental investigation on rotated detonation combustion of hypergolic propellants[J]. Journal of Propulsion Technology, 2018, 39(9): 1986-1993(in Chinese).
    [20] XUE S J, YANG W D, ZHOU L X, et al. Experimental investigation of self-excited combustion instabilities in a small Earth storable bipropellant rocket combustor[J]. Aerospace Science and Technology, 2020, 105: 106008. doi: 10.1016/j.ast.2020.106008
    [21] CHU W, GUO K K, TONG Y H, et al. Numerical analysis of self-excited tangential combustion instability for an MMH/NTO rocket combustor[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5053-5061. doi: 10.1016/j.proci.2022.07.249
    [22] QIN J X, ZHANG H Q. Numerical analysis of self-excited combustion instabilities in a small MMH/NTO liquid rocket engine[J]. International Journal of Aerospace Engineering, 2020, 2020(1): 3493214.
    [23] 初敏, 徐旭. 高频不稳定燃烧的声学数值仿真[J]. 北京亚洲成人在线一二三四五六区学报, 2015, 41(7): 1215-1222.

    CHU M, XU X. Acoustic numerical simulation of high frequency combustion instability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1215-1222(in Chinese).
    [24] GUO K K, REN Y J, TONG Y H, et al. Analysis of self-excited transverse combustion instability in a rectangular model rocket combustor[J]. Physics of Fluids, 2022, 34(4): 047104. doi: 10.1063/5.0086226
    [25] PHILO J J, GEJJI R M, SLABAUGH C D. Injector-coupled transverse instabilities in a multi-element premixed combustor[J]. International Journal of Spray and Combustion Dynamics, 2020, 12: 1756827720932832.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  309
  • HTML全文浏览量:  69
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 录用日期:  2023-10-27
  • 网络出版日期:  2023-11-23
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答