Effects of oxygen-fuel ratio on combustion stability of a model rocket engine with hypergolic propellant
-
摘要:
为研究氧燃比(O/F)对自燃推进剂模型火箭发动机燃烧稳定性的影响,在液/液双旋流矩形模型发动机中开展不同氧燃比条件下的试验,采用高频压力传感器和光电倍增管(PMT)同步捕捉了燃烧室压力振荡和CH*表征的释热脉动,获得了氧燃比对燃烧稳定性的影响规律。结果表明:点火后燃料集液腔出现了41 Hz的低频脉动,并在关机过程中诱发了燃烧室同步低频振荡。氧燃比从0.933~1.789增长的过程中,燃烧室经历了稳定、轻微不稳定、一阶横向不稳定和二阶横向不稳定的转换过程,在二阶模态下压力振荡幅值仅为平均室压的4.69%。结合光电倍增管信号,发现燃烧不稳定越剧烈压力和释热信号的耦合就越明显。基于试验的瑞利指数分析表明:一阶横向模态下燃烧不稳定的驱动源主要位于燃烧室两侧,燃烧室中间则呈抑制特性;燃烧不稳定的产生可能和推进剂与燃烧室壁面的相互作用有关。
Abstract:To estimate the effects of oxygen-fuel (O/F) ratio on the combustion stability of a model rocket engine with hypergolic propellant, experiments were carried out at different O/F ratios in a rectangular model engine with dual-liquid swirl coaxial injectors. The pressure oscillations and CH*-characterized heat release pulsations in the combustion chamber were simultaneously recorded by high-frequency pressure sensors and photomultiplier tubes (PMT). The effects of O/F ratio on combustion stability were obtained. The results show that the low-frequency oscillation of 41 Hz occurs in fuel mainfold after combustion initiation, which induces synchronous low-frequency oscillations in the combustion chamber during shutdown. In the process of increasing O/F ratio from 0.933 to 1.789, the combustion chamber undergoes a combustion stability transition process of stability, mild instability, first-order transverse instability, and second-order transverse instability. The amplitude of pressure oscillations in the 2W mode is only 4.69% of the mean combustion chamber pressure. By incorporating the PMT signal, it is found that the coupling of pressure and heat release signals is more obvious when combustion instability is more intense. Rayleigh index analysis based on the experimental data shows that the driving source of combustion instability in the 1W mode is mainly located at both sides of the combustion chamber, while suppression is found in the middle of the combustion chamber. The analysis suggests that the generation of combustion instability may be related to the interaction between the propellant and the combustion chamber walls.
-
表 1 试验结果总结
Table 1. Summary of experimental results
试验
编号$ \mathop {\dot m}\nolimits_{\mathrm{F}} /\left({\mathrm{g}} \cdot {{\mathrm{s}}^{ - 1}} \right)$ $ \mathop {\dot m}\nolimits_{\mathrm{O}} /\left({\mathrm{g}} \cdot {{\mathrm{s}}^{ - 1}} \right)$ Pc/MPa O/F $ \left(\dfrac{P'}{P_{\mathrm{c}}}\right)\bigg/ $% f /Hz 结果 1 231.5 216.1 0.73 0.933 5.62 1981 稳定 2 188.7 248.8 0.75 1.318 7.85 2363 轻微 3 183.8 270.0 0.80 1.469 12.42 2381 1W模态 4 181.3 291.5 0.82 1.608 4.88 2409 1W-2W模态 5 173.6 310.5 0.86 1.789 4.69 4628 2W模态 -
[1] YANG V, ANDERSON W E. Liquid rocket engine combustion instability[M]. Reston: AIAA, 1995. [2] CAO P B. Experimental study on the unsteady spray combustion process of a liquid oxygen/methane swirl coaxial injector[J]. 2021, 6(40): 26191-26200. [3] 冯伟, 聂万胜, 李斌, 等. 模型燃烧室内不稳定燃烧发展过程的数值分析[J]. 北京亚洲成人在线一二三四五六区学报, 2016, 42(6): 1195-1202.FENG W, NIE W S, LI B, et al. Numerical analysis of unstable combustion developing process in model combustor[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(6): 1195-1202(in Chinese). [4] YU Y C, SISCO J C, ROSEN S, et al. Spontaneous longitudinal combustion instability in a continuously-variable resonance combustor[J]. Journal of Propulsion and Power, 2012, 28(5): 876-887. doi: 10.2514/1.B34308 [5] SMITH R, XIA G P, ANDERSON W, et al. Extraction of combustion instability mechanisms from detailed computational simulations[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston : AIAA, 2010. [6] FREZZOTTI M L, NASUTI F, HUANG C, et al. Extraction of response function from numerical simulations and their use for longitudinal combustion intsbility modeling[C]//Proceedings of the 55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. [7] GEJJI R, ANDERSON W E, AUSTIN B L. Transverse combustion instabilities in a high pressure multi-element combustor[C]//Proceedings of the AIAA Propulsion and Energy. Reston: AIAA, 2019. [8] GEJJI R, LEMCHERFI A I, STRELAU R, et al. Combustion response of shear coaxial injectors to transverse combustion instabilities[C]//Proceedings of the AIAA Scitech 2020 Forum. Reston: AIAA, 2020. [9] KASTHURI P, PAWAR S A, GEJJI R, et al. Coupled interaction between acoustics and unsteady flame dynamics during the transition to thermoacoustic instability in a multi-element rocket combustor[J]. Combustion and Flame, 2022, 240: 112047. doi: 10.1016/j.combustflame.2022.112047 [10] Rayleigh. The explanation of certain acoustical phenomena1[J]. Nature, 1878, 18(455): 319-321. doi: 10.1038/018319a0 [11] LUBARSKY E, HADJIPANAYIS M, SHCHERBIK D, et al. Control of tangential combustion instability by asymmetric baffle [C]//Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008. [12] KOBAYASHI T, MURAYAMA S, HACHIJO T, et al. Early detection of thermoacoustic combustion instability using a methodology combining complex networks and machine learning[J]. Physical Review Applied, 2019, 11(6): 064034. doi: 10.1103/PhysRevApplied.11.064034 [13] ARMBRUSTER W, HARDI J, OSCHWALD M. Impact of shear-coaxial injector hydrodynamics on high-frequency combustion instabilities in a representative cryogenic rocket engine[J]. International Journal of Spray and Combustion Dynamics, 2022, 14(1-2): 118-130. doi: 10.1177/17568277221093848 [14] AHN K, CHOI H S. Combustion dynamics of swirl coaxial injectors in fuel-rich combustion[J]. Journal of Propulsion and Power, 2012, 28(6): 1359-1367. doi: 10.2514/1.B34448 [15] GRÖNING S, HARDI J S, SUSLOV D, et al. Injector-driven combustion instabilities in a hydrogen/oxygen rocket combustor[J]. Journal of Propulsion and Power, 2016, 32(3): 560-573. doi: 10.2514/1.B35768 [16] GRÖNING S, HARDI J, SUSLOV D, et al. Influence of hydrogen temperature on the stability of a rocket engine combustor operated with hydrogen and oxygen[J]. CEAS Space Journal, 2017, 9(1): 59-76. doi: 10.1007/s12567-016-0130-8 [17] WIERMAN M, NUGENT N, ANDERSON W. Combustion response of a LOX/LCH4 element to transverse instabilities[C]//Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2011. [18] BUSCHHAGEN T, GEJJI R, PHILO J, et al. Self-excited transverse combustion instabilities in a high pressure lean premixed jet flame[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5181-5188. doi: 10.1016/j.proci.2018.07.086 [19] 严宇, 胡洪波, 洪流, 等. 自燃推进剂旋转爆震燃烧实验研究[J]. 推进技术, 2018, 39(9): 1986-1993.YAN Y, HU H B, HONG L, et al. Experimental investigation on rotated detonation combustion of hypergolic propellants[J]. Journal of Propulsion Technology, 2018, 39(9): 1986-1993(in Chinese). [20] XUE S J, YANG W D, ZHOU L X, et al. Experimental investigation of self-excited combustion instabilities in a small Earth storable bipropellant rocket combustor[J]. Aerospace Science and Technology, 2020, 105: 106008. doi: 10.1016/j.ast.2020.106008 [21] CHU W, GUO K K, TONG Y H, et al. Numerical analysis of self-excited tangential combustion instability for an MMH/NTO rocket combustor[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5053-5061. doi: 10.1016/j.proci.2022.07.249 [22] QIN J X, ZHANG H Q. Numerical analysis of self-excited combustion instabilities in a small MMH/NTO liquid rocket engine[J]. International Journal of Aerospace Engineering, 2020, 2020(1): 3493214. [23] 初敏, 徐旭. 高频不稳定燃烧的声学数值仿真[J]. 北京亚洲成人在线一二三四五六区学报, 2015, 41(7): 1215-1222.CHU M, XU X. Acoustic numerical simulation of high frequency combustion instability[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1215-1222(in Chinese). [24] GUO K K, REN Y J, TONG Y H, et al. Analysis of self-excited transverse combustion instability in a rectangular model rocket combustor[J]. Physics of Fluids, 2022, 34(4): 047104. doi: 10.1063/5.0086226 [25] PHILO J J, GEJJI R M, SLABAUGH C D. Injector-coupled transverse instabilities in a multi-element premixed combustor[J]. International Journal of Spray and Combustion Dynamics, 2020, 12: 1756827720932832. -


下载: