留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GBDT-GS方法的民机重着陆风险预测

王向章 牟瑞芳 王赫 许博浩

王向章,牟瑞芳,王赫,等. 基于GBDT-GS方法的民机重着陆风险预测[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):3011-3019 doi: 10.13700/j.bh.1001-5965.2023.0443
引用本文: 王向章,牟瑞芳,王赫,等. 基于GBDT-GS方法的民机重着陆风险预测[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):3011-3019 doi: 10.13700/j.bh.1001-5965.2023.0443
WANG X Z,MOU R F,WANG H,et al. Hard landing risk prediction of civil aircraft based on GBDT-GS method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3011-3019 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0443
Citation: WANG X Z,MOU R F,WANG H,et al. Hard landing risk prediction of civil aircraft based on GBDT-GS method[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3011-3019 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0443

基于GBDT-GS方法的民机重着陆风险预测

doi: 10.13700/j.bh.1001-5965.2023.0443
基金项目: 

民航安全能力建设基金项目(ASSA202019)

详细信息
    通讯作者:

    E-mail:513432965@qq.com

  • 中图分类号: V328.5

Hard landing risk prediction of civil aircraft based on GBDT-GS method

Funds: 

Civil Aviation Safety Capacity Building Fund project (ASSA202019)

More Information
  • 摘要:

    重着陆可能造成机体结构损伤等征候事件,甚至机毁人亡飞行事故。针对当前重着陆风险评估缺乏物理本质剖析,为有效实施重着陆风险识别和等级判据,以便提高飞行员着陆操作品质,结合飞行状态分析,基于梯度提升决策树(GBDT)算法和网格搜索(GS)法构建重着陆风险预测模型。通过飞机受力分析并构建着陆飞行运动学方程,确定与重着陆关系密切的5项飞行状态参数;从机载快速存取记录器(QAR)记录的数据中提取飞行状态数据构建数据集,并根据QAR参数特征,通过GBDT算法构建重着陆风险预测模型,并利用GS优化模型参数;以某航空公司 “成都-沈阳”航线运行为例,选取530个QAR数据对该模型进行训练和测试,并与随机森林、Logistic多元回归、循环神经网络(RNN)等算法结果比较。结果表明:GBDT-GS方法在预测重着陆风险方面的性能较其他算法优异,预测准确率达到92%,验证了所建模型的客观有效性。

     

  • 图 1  标称进近着陆任务示意图

    Figure 1.  Diagram of nominal approach and landing mission

    图 2  飞机纵向受力示意图

    Figure 2.  Diagram of longitudinal force on aircraft

    图 3  GBDT算法原理图

    Figure 3.  Schematic diagram of GBDT algorithm

    图 4  参数特征损失的权值更新过程

    Figure 4.  Parameter feature loss weight updating process

    图 5  GS优化模型参数

    Figure 5.  Optimization of model parameters by GS

    图 6  本文方法流程

    Figure 6.  Flow of the proposed method

    图 7  重着陆风险识别结果

    Figure 7.  Identification results of hard landing risk

    图 8  准确率变化对比

    Figure 8.  Accuracy change comparison

    表  1  飞行数据样本的数据化处理

    Table  1.   Data processing of flight data samples

    接地载荷 样本状态 标签
    VRTG > 1.75G 高风险 3
    1.6G < VRTG < 1.75G 中风险 2
    1.5G < VRTG < 1.6G 低风险 1
    VRTG < 1.5G 无风险 0
     注:G表示飞机“过载”。
    下载: 导出CSV

    表  2  数据集样本(部分)

    Table  2.   Data set sample (partial)

    样本 x1/m x2/(m·s−1) x3/(m·s−1) x4/(°) x5/(°) 标签
    1 14.32 67.39 −1.204 2.81 0 0
    2 14.63 69.45 −1.219 3.52 −1.32 0
    3 15.24 69.45 −1.300 6.33 −2.46 0
    4 13.72 72.02 −1.382 2.98 −2.46 1
    5 19.51 70.48 −2.753 1.41 0 3
    6 14.93 70.48 −1.529 4.20 0.40 0
    529 18.29 68.42 −1.544 2.30 0.40 2
    530 15.85 69.45 −1.199 3.46 1.05 0
    下载: 导出CSV

    表  3  不同参数下的预测性能(部分)

    Table  3.   Prediction performance under different parameters (partial)

    参数 ACC RMSE MAE MSE
    [200, 0.05, 1] 0.8681 0.1258 0.4196 0.1761
    [200, 0.05, 5] 0.8698 0.1592 0.4692 0.2213
    [200, 0.10, 3] 0.8864 0.1698 0.5200 0.2704
    [200, 0.10, 4] 0.9185 0.1195 0.4121 0.1635
    [200, 0.10, 5] 0.8754 0.2076 0.5551 0.3082
    [200, 0.15, 1] 0.8658 0.2516 0.5379 0.2893
    [200, 0.15, 5] 0.8750 0.2138 0.56078 0.3145
    下载: 导出CSV

    表  4  4种算法预测性能对比

    Table  4.   Comparison of prediction performance among four algorithms

    算法ACCRMSEMAEMSE
    GBDT-GS0.91850.11950.41210.1635
    随机森林0.88680.12320.44040.1824
    Logistic多元回归0.83890.13840.48890.2390
    RNN0.83890.13210.46920.2203
    下载: 导出CSV

    表  5  “成都-沈阳”航段近期QAR数据

    Table  5.   Recent QAR data of Chengdu-Shenyang segment

    样本 x1/m x2/(m·s−1) x3/(m·s−1) x4 x5 风险等级
    1 15.85 70.28 −0.518 4.60 −0.35 0
    2 17.68 70.93 −1.463 4.22 −1.05 0
    3 16.76 69.19 −0.833 4.92 0 0
    25 23.16 73.89 −2.946 −1.10 −0.35 3
    26 14.93 69.79 −1.488 4.04 0 0
    49 16.76 70.74 −1.951 3.03 4.22 1
    50 16.46 69.98 −0.523 4.13 0 0
    下载: 导出CSV
  • [1] International Civil Aviation Organization. Aircraft operations[M]. 5th ed. Montreal: International Civil Aviation Organization, 2006.
    [2] The Boeing Company. Statistical summary of commercial jet airplane accidents: worldwide operations | 1959-2024[R]. Chicago: The Boeing Company, 2025.
    [3] International Air Transport Association. IATA safety report 2018[R]. Montreal: International Air Transport Association, 2019.
    [4] 王冉. 基于飞行数据的颠簸飞行状态估计初步研究[D]. 南京: 南京亚洲成人在线一二三四五六区, 2020.

    WANG R. Preliminary study on bumpy flight state estimation based on flight data[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020(in Chinese).
    [5] 汪磊, 孙瑞山, 吴昌旭, 等. 基于飞行QAR数据的重着陆风险定量评价模型[J]. 中国安全科学学报, 2014, 24(2): 88-92.

    WANG L, SUN R S, WU C X, et al. A flight QAR data based model for hard landing risk quantitative evaluation[J]. China Safety Science Journal, 2014, 24(2): 88-92(in Chinese).
    [6] SARTOR P, BECKER W, WORDEN K, et al. Bayesian sensitivity analysis of flight parameters in a hard-landing analysis process[J]. Journal of Aircraft, 2016, 53(5): 1317-1331. doi: 10.2514/1.C032757
    [7] 聂磊, 黄圣国, 舒平, 等. 基于支持向量机(SVM)的民用飞机重着陆智能诊断研究[J]. 中国安全科学学报, 2009, 19(7): 149-153.

    NIE L, HUANG S G, SHU P, et al. Intelligent diagnosis for hard landing of aircraft based on SVM[J]. China Safety Science Journal, 2009, 19(7): 149-153(in Chinese).
    [8] 许桂梅, 黄圣国. 应用LS-SVM的飞机重着陆诊断[J]. 系统工程理论与实践, 2010, 30(4): 763-768.

    XU G M, HUANG S G. Airplane’s hard landing diagnosis using LS-SVM[J]. Systems Engineering-Theory & Practice, 2010, 30(4): 763-768(in Chinese).
    [9] 曹海鹏, 舒平, 黄圣国. 基于神经网络的民用飞机重着陆诊断技术研究[J]. 计算机测量与控制, 2008, 16(7): 906-908.

    CAO H P, SHU P, HUANG S G. Study of aircraft hard landing diagnosis based on nerual network[J]. Computer Measurement & Control, 2008, 16(7): 906-908(in Chinese).
    [10] 于健, 董健康, 李佳. 基于神经网络的飞机着陆垂直载荷大诊断技术研究[J]. 中国民航飞行学院学报, 2010, 21(4): 16-18.

    YU J, DONG J K, LI J. Research on large diagnosis technology of aircraft landing vertical load based on neural network[J]. Journal of Civil Aviation Flight University of China, 2010, 21(4): 16-18(in Chinese).
    [11] 郑薇. 基于QAR数据的重着陆风险评估及预测研究[D]. 天津: 中国民航大学, 2014.

    ZHENG W. Research on risk assessment and prediction of heavy landing based on QAR data[D]. Tianjin: Civil Aviation University of China, 2014(in Chinese).
    [12] 周进. 基于熵权TOPSIS的飞机重着陆风险因素排序[J]. 河南科技, 2019, 38(19): 106-110.

    ZHOU J. Risk factors sequencing of aircraft hard landing based on entropy weight and topsis method[J]. Henan Science and Technology, 2019, 38(19): 106-110(in Chinese).
    [13] 汪磊, 郭世广, 任勇. 基于飞行数据正态云的着陆操作风险评价方法[J]. 安全与环境学报, 2019, 19(5): 1555-1561.

    WANG L, GUO S G, REN Y. Landing operation risk evaluation based on the normal cloud of the flight data[J]. Journal of Safety and Environment, 2019, 19(5): 1555-1561(in Chinese).
    [14] 孙瑞山, 张思远, 汪磊. 基于统计过程控制的QAR数据风险预测方法[J]. 统计与决策, 2015, 31(21): 33-36.

    SUN R S, ZHANG S Y, WANG L. QAR data risk prediction method based on statistical process control[J]. Statistics & Decision, 2015, 31(21): 33-36(in Chinese).
    [15] 郑磊, 池宏, 许保光, 等. 飞机重着陆预警分析方法[J]. 数学的实践与认识, 2019, 49(3): 56-72.

    ZHENG L, CHI H, XU B G, et al. Method of early warning analysis for aircraft hard landing[J]. Mathematics in Practice and Theory, 2019, 49(3): 56-72(in Chinese).
    [16] 陈思, 孙有朝, 郑敏. 基于支持向量机的飞机重着陆风险预警模型[J]. 兵器装备工程学报, 2019, 40(9): 154-158.

    CHEN S, SUN Y C, ZHENG M. Heavy landing risk pre-warning model based on support vector machine[J]. Journal of Ordnance Equipment Engineering, 2019, 40(9): 154-158(in Chinese).
    [17] 阙向东. 飞机飞行状态估计与飞行品质评估研究[D]. 西安: 西北工业大学, 2004.

    QUE X D. Research on aircraft flight state estimation and flight quality evaluation[D]. Xi’an: Northwestern Polytechnical University, 2004(in Chinese).
    [18] 耿建中, 姚海林. 基于UKF的飞机飞行状态估计[C]//2008系统仿真技术及其应用学术会议论文集. 合肥: 中国科学技术大学出版社, 2008: 68-71.

    GENG J Z, YAO H L. Aircraft flight state estimation based on unscented Kalman filter[C]//Proceedings of the 2008 Academic Conference on System Simulation Technology and Applications. Hefei: Press of University of Science and Technology of China, 2008: 68-71(in Chinese).
    [19] COOMBES M, LIU C J, CHEN W H. Situation awareness for UAV operating in terminal areas using bearing-only observations and circuit flight rules[C]//Proceedings of the American Control Conference. Piscataway: IEEE Press, 2016: 479-485.
    [20] 孙禾. 航空器飞行状态预测方法研究[D]. 天津: 中国民航大学, 2014.

    SUN H. Research on prediction method of aircraft flight state[D]. Tianjin: Civil Aviation University of China, 2014(in Chinese).
    [21] RAOL J, JATEGAONKAR R. Aircraft parameter estimation using recurrent neural networks—A critical appraisal[C]//Proceedings of the 20th Atmospheric Flight Mechanics Conference. Reston: AIAA, 1995.
    [22] LI L S, GARIEL M, HANSMAN R J, et al. Anomaly detection in onboard-recorded flight data using cluster analysis[C]//Proceedings of the IEEE/AIAA 30th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2011: 1-31.
    [23] LEE H, PURANIK T G, FISCHER O P, et al. Flight data driven system identification using neural networks for landing safety assessment[C]//Proceedings of the IEEE/AIAA 40th Digital Avionics Systems Conference. Piscataway: IEEE Press, 2021: 1-9.
    [24] 王晴昊, 胡剑波, 姚登凯. STPA在进近着陆飞行安全分析中的研究及应用[J]. 系统工程理论与实践, 2018, 38(10): 2703-2712.

    WANG Q H, HU J B, YAO D K. Research and application of STPA to flight safety analysis in approach and landing[J]. Systems Engineering-Theory & Practice, 2018, 38(10): 2703-2712(in Chinese).
    [25] 刘琼, 张豹. 基于GBDT算法的锂电池剩余使用寿命预测[J]. 电子测量与仪器学报, 2022, 36(10): 166-172.

    LIU Q, ZHANG B. Remaining useful lifetime prediction for lithiumbattery based on GBDT algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(10): 166-172(in Chinese).
    [26] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232.
    [27] 奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用, 2011, 47(3): 123-124.

    FENG G H. Parameter optimizing for support vector machines classification[J]. Computer Engineering and Applications, 2011, 47(3): 123-124(in Chinese).
    [28] 中国民用航空局. 飞行品质监控(FOQA)实施与管理: AC-121/135-FS-2012-45R1[S]. 北京: 中国民用航空局飞行标准司, 2015-06-30.

    Civil Aviation Administration of China. Implementation and management of flight quality control (FOQA): AC-121/135-FS-2012-45R1[S]. Beijing: Flight Standards Department of Civil Aviation Administration of China, 2015-06-30.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  102
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-05
  • 录用日期:  2023-09-10
  • 网络出版日期:  2023-09-13
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答