留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冷云辐射对超压气球热动力学特性影响

贺澜 刘强 杨燕初 祝榕辰 周江华

贺澜,刘强,杨燕初,等. 冷云辐射对超压气球热动力学特性影响[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):3117-3129 doi: 10.13700/j.bh.1001-5965.2023.0435
引用本文: 贺澜,刘强,杨燕初,等. 冷云辐射对超压气球热动力学特性影响[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(9):3117-3129 doi: 10.13700/j.bh.1001-5965.2023.0435
HE L,LIU Q,YANG Y C,et al. Influence of cold cloud radiation on thermal-dynamic characteristics of super-pressure balloon[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3117-3129 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0435
Citation: HE L,LIU Q,YANG Y C,et al. Influence of cold cloud radiation on thermal-dynamic characteristics of super-pressure balloon[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3117-3129 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0435

冷云辐射对超压气球热动力学特性影响

doi: 10.13700/j.bh.1001-5965.2023.0435
基金项目: 

国家重点研发计划(2022YFB3903005-01);中国科学院青年创新促进会(2020133)

详细信息
    通讯作者:

    E-mail:liuqiang1001@aoe.ac.cn

  • 中图分类号: V273

Influence of cold cloud radiation on thermal-dynamic characteristics of super-pressure balloon

Funds: 

National Key Research and Development Program of China (2022YFB3903005-01); Youth Innovation Promotion Association of Chinese Academy of Sciences (2020133)

More Information
  • 摘要:

    针对冷云辐射对超压气球热动力特性影响的问题,提出融合冷云辐射特性的超压气球热动力学模型。研究不同相对高度条件下,冷云对超压气球热环境的影响。分析冷云高度、厚度、云粒子有效半径、温度、含水量等特征,建立冷云的辐射吸收、透过和反射特性模型。在动力学、运动学和热力学分析的基础上,建立包含冷云辐射特性的超压气球热动力学模型,开发仿真计算程序,利用实测数据验证热动力学模型和仿真程序的准确性。利用风云卫星冷云数据,仿真分析冷云辐射影响下的超压气球热动力学特性,结果显示:冷云会降低超压气球温度,影响超压气球升空速度和高度,当云层厚度或云层温度到达一定条件时,超压气球将无法抵达预期驻留高度。

     

  • 图 1  浮空器在云层之下的热环境

    Figure 1.  Thermal environment of aerostat under cloud

    图 2  浮空器在云层之中的热环境

    Figure 2.  Thermal environment of aerostat in cloud

    图 3  浮空器在云层之上的热环境

    Figure 3.  Thermal environment of aerostat above cloud

    图 4  云的分类[7]

    Figure 4.  Classification of cloud[7]

    图 5  超压气球受力分析

    Figure 5.  Force analysis of super-pressure balloon

    图 6  仿真程序结构

    Figure 6.  Structure of simulation program

    图 7  温度传感器分布示意图

    Figure 7.  Distribution of temperature sensors

    图 8  无云环境飞行过程氦气温度

    Figure 8.  Helium temperature during flight process in environment without cloud

    图 9  无云环境升空速度

    Figure 9.  Ascending velocity in environment without cloud

    图 10  无云环境飞行高度

    Figure 10.  Flight altitude in environment without cloud

    图 11  冷云区域内升空过程示意图

    Figure 11.  Ascending process in environment with cold cloud

    图 12  升空过程氦气温度对比

    Figure 12.  Comparison of helium temperature during ascending process

    图 13  升空过程球体内外压差对比

    Figure 13.  Comparison of pressure difference during ascending process

    图 14  升空过程速度对比

    Figure 14.  Comparison of velocity during ascending process

    图 15  升空过程飞行高度对比

    Figure 15.  Comparison of flight altitude during ascending process

    图 16  平飞经过冷云区域上方过程示意图

    Figure 16.  Horizontal flight process above cold cloud

    图 17  平飞过程氦气温度对比

    Figure 17.  Comparison of helium temperature during horizontal flight process

    图 18  平飞过程球体内外压差对比

    Figure 18.  Comparison of pressure difference during horizontal flight process

    图 19  平飞过程升空速度对比

    Figure 19.  Comparison of flight velocity during horizontal flight process

    图 20  平飞过程飞行高度对比

    Figure 20.  Comparison of flight altitude during horizontal flight process

    图 21  不同云层温度条件下飞行过程氦气温度

    Figure 21.  Helium temperature during flight process at different cloud temperatures

    图 22  不同云层温度条件下升空速度

    Figure 22.  Ascending velocity at different cloud temperatures

    图 23  不同云层温度条件下飞行高度

    Figure 23.  Flight altitude at different cloud temperatures

    图 24  不同云层厚度条件下飞行过程氦气温度

    Figure 24.  Helium temperature during flight process at different cloud thicknesses

    图 25  不同云层厚度条件下升空速度

    Figure 25.  Ascending velocity at different cloud thicknesses

    图 26  不同云层厚度条件下飞行高度

    Figure 26.  Flight altitude at different cloud thicknesses

    图 27  云层温度与厚度耦合特性分析

    Figure 27.  Analysis of coupling characteristics of cold cloud temperature and thickness

    表  1  某超压气球系统设计参数

    Table  1.   Design parameters of a super-pressure balloon system

    参数数值
    浮升气体氦气
    放飞时间8月下旬上午6:45
    驻留高度/km25
    最大体积/m37240
    总质量/kg280
    球膜质量/kg120
    载荷质量/kg124
    下载: 导出CSV

    表  2  球膜材料热辐射特性参数

    Table  2.   Thermal radiation properties of balloon film

    参数 数值
    球膜比热容$ /({\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot {{\text{K}}^{{\text{ - 1}}}}) $ 2302.7
    球膜对可见光吸收率 0.02
    球膜对可见光透过率 0.9
    球膜对红外辐射吸收率 0.078
    球膜对红外辐射透过率 0.9
    下载: 导出CSV
  • [1] 吕明云, 巫资春. 高空气球热力学模型与上升过程仿真分析[J]. 北京亚洲成人在线一二三四五六区学报, 2011, 37(5): 505-509.

    LÜ M Y, WU Z C. Thermodynamic model and numerical simulation of high altitude balloon ascending process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5): 505-509(in Chinese).
    [2] BIRD R E, HULSTROM R L. Simplified clear sky model for direct and diffuse insolation on horizontal surfaces: SERI/TR-642-761[R]. Golden: Solar Energy Research Institute, 1981.
    [3] NIELSEN L B, PRAHM L P, BERKOWICZ R, et al. Net incoming radiation estimated from hourly global radiation and/or cloud observations[J]. Journal of Climatology, 1981, 1(3): 255-272.
    [4] FARLEY R. BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons[C]//Proceedings of the AIAA 5th ATIO and 16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston: AIAA, 2005: 7412.
    [5] 程晨. 平流层浮空器瞬态热模型及热特性研究[D]. 上海: 上海交通大学, 2019.

    CHENG C. Study on transient thermal model and thermal characteristics of stratospheric aerostat[D]. Shanghai: Shanghai Jiao Tong University, 2019(in Chinese).
    [6] U. S. Committee on Extension to the Standard Atmosphere. US standard atmosphere, 1976[S]. Washington, DC: U. S. Government Printing Office, 1976.
    [7] ORGANIZATION W M. International cloud atlas[M]. Geneva: World Meteorological Organization, 2017.
    [8] SLINGO A. A GCM parameterization for the shortwave radiative properties of water clouds[J]. Journal of the Atmospheric Sciences, 1989, 46(10): 1419-1427. doi: 10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2
    [9] LINDNER T H, LI J. Parameterization of the optical properties for water clouds in the infrared[J]. Journal of Climate, 2000, 13(10): 1797-1805. doi: 10.1175/1520-0442(2000)013<1797:POTOPF>2.0.CO;2
    [10] STEPHENS G L, ACKERMAN S, SMITH E A. A shortwave parameterization revised to improve cloud absorption[J]. Journal of the Atmospheric Sciences, 1984, 41(4): 687-690. doi: 10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2
    [11] 娄树理, 周晓东. 基于光学厚度的云红外辐射计算[J]. 应用光学, 2011, 32(2): 343-347.

    LOU S L, ZHOU X D. Calculation of cloud infrared radiation based on optical depth[J]. Journal of Applied Optics, 2011, 32(2): 343-347(in Chinese).
    [12] 施帅红. 近43年太阳辐射的变化特征以及云的光学特性的研究[D]. 南京: 南京信息工程大学, 2007.

    SHI S H. Variation characteristics of solar radiation and optical characteristics of clouds in recent 43 years[D]. Nanjing: Nanjing University of Information Science & Technology, 2007(in Chinese).
    [13] 孙治安, 刘晶淼, 曾宪宁, 等. 云天地表总辐射和净辐射瞬时值的计算方法[J]. 气象与环境学报, 2014, 30(3): 1-9.

    SUN Z A, LIU J M, ZENG X N, et al. Estimation of global and net solar radiation at the Earth surface under cloudy-sky condition[J]. Journal of Meteorology and Environment, 2014, 30(3): 1-9(in Chinese).
    [14] 郭新军, 金伟其, 王霞, 等. 云层红外表观辐射模型的研究[J]. 北京理工大学学报, 2003, 23(4): 414-418.

    GUO X J, JIN W Q, WANG X, et al. An infrared apparent radiation model for clouds[J]. Journal of Beijing Institute of Technology, 2003, 23(4): 414-418(in Chinese).
    [15] CHYLEK P, RAMASWAMY V. Simple approximation for infrared emissivity of water clouds[J]. Journal of the Atmospheric Sciences, 1982, 39(1): 171-177.
    [16] 刘强, 武哲, 祝明, 等. 平流层气球热动力学仿真[J]. 北京亚洲成人在线一二三四五六区学报, 2013, 39(12): 1578-1583.

    LIU Q, WU Z, ZHU M, et al. Thermal-dynamic simulation of stratospheric balloon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12): 1578-1583(in Chinese).
    [17] RAN H J, THOMAS R, MAVRIS D. A comprehensive global model of broadband direct solar radiation for solar cell simulation[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 33.
    [18] 夏新林, 李德富, 杨小川. 平流层浮空器的热特性与研究现状[J]. 航空学报, 2009, 30(4): 577-583.

    XIA X L, LI D F, YANG X C. Thermal characteristics of stratospheric aerostats and their research[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 577-583(in Chinese).
  • 加载中
图(27) / 表(2)
计量
  • 文章访问数:  205
  • HTML全文浏览量:  86
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-04
  • 录用日期:  2023-09-14
  • 网络出版日期:  2023-10-10
  • 整期出版日期:  2025-09-30

目录

    /

    返回文章
    返回
    常见问答