Influence of cold cloud radiation on thermal-dynamic characteristics of super-pressure balloon
-
摘要:
针对冷云辐射对超压气球热动力特性影响的问题,提出融合冷云辐射特性的超压气球热动力学模型。研究不同相对高度条件下,冷云对超压气球热环境的影响。分析冷云高度、厚度、云粒子有效半径、温度、含水量等特征,建立冷云的辐射吸收、透过和反射特性模型。在动力学、运动学和热力学分析的基础上,建立包含冷云辐射特性的超压气球热动力学模型,开发仿真计算程序,利用实测数据验证热动力学模型和仿真程序的准确性。利用风云卫星冷云数据,仿真分析冷云辐射影响下的超压气球热动力学特性,结果显示:冷云会降低超压气球温度,影响超压气球升空速度和高度,当云层厚度或云层温度到达一定条件时,超压气球将无法抵达预期驻留高度。
Abstract:To investigate the influence of cold cloud radiation on the thermal-dynamic characteristics of super-pressure balloons, this paper proposed a thermal-dynamic model that incorporated cold cloud radiation characteristics for super-pressure balloons. First, the paper probed into the influence of cold cloud on the thermal environment of a super-pressure balloon at different relative heights. Then, it analyzed cold cloud characteristics including height, thickness, effective radius of cloud droplet, temperature, and water content and further described the radiation absorption, transmission, and reflection equations of cold cloud. On the basis of dynamic, kinetic, and thermal analyses, a thermal-dynamic model that incorporated cold cloud radiation characteristics was established for the super-pressure balloon, and a computer program was developed. Finally, measured data was used to verify the accuracy of the thermal-dynamic model and the program. Cold cloud data from the Fengyun satellite was introduced to simulate the thermal-dynamic characteristics of a super-pressure balloon under the influence of cold cloud radiation. The results show that cold cloud may lower the temperature of the super-pressure balloon and therefore exert influence on its flight velocity and altitude. When the cloud thickness and temperature reach a critical condition, the super-pressure balloon could not reach its designed flight altitude.
-
表 1 某超压气球系统设计参数
Table 1. Design parameters of a super-pressure balloon system
参数 数值 浮升气体 氦气 放飞时间 8月下旬上午6:45 驻留高度/km 25 最大体积/m3 7240 总质量/kg 280 球膜质量/kg 120 载荷质量/kg 124 表 2 球膜材料热辐射特性参数
Table 2. Thermal radiation properties of balloon film
参数 数值 球膜比热容$ /({\text{J}} \cdot {\text{k}}{{\text{g}}^{{\text{ - 1}}}} \cdot {{\text{K}}^{{\text{ - 1}}}}) $ 2302.7 球膜对可见光吸收率 0.02 球膜对可见光透过率 0.9 球膜对红外辐射吸收率 0.078 球膜对红外辐射透过率 0.9 -
[1] 吕明云, 巫资春. 高空气球热力学模型与上升过程仿真分析[J]. 北京亚洲成人在线一二三四五六区学报, 2011, 37(5): 505-509.LÜ M Y, WU Z C. Thermodynamic model and numerical simulation of high altitude balloon ascending process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5): 505-509(in Chinese). [2] BIRD R E, HULSTROM R L. Simplified clear sky model for direct and diffuse insolation on horizontal surfaces: SERI/TR-642-761[R]. Golden: Solar Energy Research Institute, 1981. [3] NIELSEN L B, PRAHM L P, BERKOWICZ R, et al. Net incoming radiation estimated from hourly global radiation and/or cloud observations[J]. Journal of Climatology, 1981, 1(3): 255-272. [4] FARLEY R. BalloonAscent: 3-D simulation tool for the ascent and float of high-altitude balloons[C]//Proceedings of the AIAA 5th ATIO and 16th Lighter-Than-Air Sys Tech. and Balloon Systems Conferences. Reston: AIAA, 2005: 7412. [5] 程晨. 平流层浮空器瞬态热模型及热特性研究[D]. 上海: 上海交通大学, 2019.CHENG C. Study on transient thermal model and thermal characteristics of stratospheric aerostat[D]. Shanghai: Shanghai Jiao Tong University, 2019(in Chinese). [6] U. S. Committee on Extension to the Standard Atmosphere. US standard atmosphere, 1976[S]. Washington, DC: U. S. Government Printing Office, 1976. [7] ORGANIZATION W M. International cloud atlas[M]. Geneva: World Meteorological Organization, 2017. [8] SLINGO A. A GCM parameterization for the shortwave radiative properties of water clouds[J]. Journal of the Atmospheric Sciences, 1989, 46(10): 1419-1427. doi: 10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2 [9] LINDNER T H, LI J. Parameterization of the optical properties for water clouds in the infrared[J]. Journal of Climate, 2000, 13(10): 1797-1805. doi: 10.1175/1520-0442(2000)013<1797:POTOPF>2.0.CO;2 [10] STEPHENS G L, ACKERMAN S, SMITH E A. A shortwave parameterization revised to improve cloud absorption[J]. Journal of the Atmospheric Sciences, 1984, 41(4): 687-690. doi: 10.1175/1520-0469(1984)041<0687:ASPRTI>2.0.CO;2 [11] 娄树理, 周晓东. 基于光学厚度的云红外辐射计算[J]. 应用光学, 2011, 32(2): 343-347.LOU S L, ZHOU X D. Calculation of cloud infrared radiation based on optical depth[J]. Journal of Applied Optics, 2011, 32(2): 343-347(in Chinese). [12] 施帅红. 近43年太阳辐射的变化特征以及云的光学特性的研究[D]. 南京: 南京信息工程大学, 2007.SHI S H. Variation characteristics of solar radiation and optical characteristics of clouds in recent 43 years[D]. Nanjing: Nanjing University of Information Science & Technology, 2007(in Chinese). [13] 孙治安, 刘晶淼, 曾宪宁, 等. 云天地表总辐射和净辐射瞬时值的计算方法[J]. 气象与环境学报, 2014, 30(3): 1-9.SUN Z A, LIU J M, ZENG X N, et al. Estimation of global and net solar radiation at the Earth surface under cloudy-sky condition[J]. Journal of Meteorology and Environment, 2014, 30(3): 1-9(in Chinese). [14] 郭新军, 金伟其, 王霞, 等. 云层红外表观辐射模型的研究[J]. 北京理工大学学报, 2003, 23(4): 414-418.GUO X J, JIN W Q, WANG X, et al. An infrared apparent radiation model for clouds[J]. Journal of Beijing Institute of Technology, 2003, 23(4): 414-418(in Chinese). [15] CHYLEK P, RAMASWAMY V. Simple approximation for infrared emissivity of water clouds[J]. Journal of the Atmospheric Sciences, 1982, 39(1): 171-177. [16] 刘强, 武哲, 祝明, 等. 平流层气球热动力学仿真[J]. 北京亚洲成人在线一二三四五六区学报, 2013, 39(12): 1578-1583.LIU Q, WU Z, ZHU M, et al. Thermal-dynamic simulation of stratospheric balloon[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(12): 1578-1583(in Chinese). [17] RAN H J, THOMAS R, MAVRIS D. A comprehensive global model of broadband direct solar radiation for solar cell simulation[C]//Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007: 33. [18] 夏新林, 李德富, 杨小川. 平流层浮空器的热特性与研究现状[J]. 航空学报, 2009, 30(4): 577-583.XIA X L, LI D F, YANG X C. Thermal characteristics of stratospheric aerostats and their research[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(4): 577-583(in Chinese). -


下载: