留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于旋转目标感知网络的SAR船舶检测方法

王梓懿 尹嘉豪 黄博斌 高峰

王梓懿,尹嘉豪,黄博斌,等. 基于旋转目标感知网络的SAR船舶检测方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(7):2498-2505 doi: 10.13700/j.bh.1001-5965.2023.0394
引用本文: 王梓懿,尹嘉豪,黄博斌,等. 基于旋转目标感知网络的SAR船舶检测方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(7):2498-2505 doi: 10.13700/j.bh.1001-5965.2023.0394
WANG Z Y,YIN J H,HUANG B B,et al. A rotated content-aware retina network for SAR ship detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2498-2505 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0394
Citation: WANG Z Y,YIN J H,HUANG B B,et al. A rotated content-aware retina network for SAR ship detection[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2498-2505 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0394

基于旋转目标感知网络的SAR船舶检测方法

doi: 10.13700/j.bh.1001-5965.2023.0394
基金项目: 

科技创新2030-新一代人工智能重大项目(2022ZD0117202);青岛市自然科学基金(23-2-1-222-zyyd-jch)

详细信息
    通讯作者:

    E-mail:gaofeng@ouc.edu.cn

  • 中图分类号: TP391

A rotated content-aware retina network for SAR ship detection

Funds: 

National Science and Technology Major Project of China Under Grant (2022ZD0117202); National Science Fundation of Qingdao (23-2-1-222-zyyd-jch)

More Information
  • 摘要:

    目标尺寸变化多样且干扰因素多,目标有多种方向且训练样本数据量有限是当前合成孔径雷达(SAR)船舶检测方法主要面临的2个难题。为此,提出了一种用于SAR图像船舶检测的旋转目标感知网络RCAR-Net。主干网络使用基于多尺度Transformer架构的PVTv2,可以更好地保留特征图的局部连续性,同时更好地融合图像的多尺度特征;将旋转边界框与RetinaNet结合,有效减少了背景冗余以及噪声的干扰;引入Cutout方法进行数据增强,用现有样本的部分遮挡来扩大数据集,提高模型的鲁棒性和泛化能力;为了在保证检测精度的同时节省计算和内存开销,使用高效的CARAFE 算子对低分辨率的特征图进行上采样,提高多尺度融合效果。RCAR-Net在SSDD和HRSID这2个SAR船舶检测数据集的平均精度分别达到93.63%和90.37%,明显优于DPAN、PANet等方法,对于目标尺寸变化和噪声干扰具有较强的适应性。

     

  • 图 1  RCAR-Net 总体框架

    Figure 1.  RCAR-Net overall framework

    图 2  图 2 卷积神经网络 CNN、ViT 与 PVT 的架构对比

    Figure 2.  Convolutional neural networkNN, ViT and PVT architecture comparison

    图 3  内容感知的特征金字塔网络

    Figure 3.  Content perception feature pyramid network

    图 4  2种边界框示意

    Figure 4.  Two bounding box diagrams

    图 5  水平边界框与旋转边界框对比

    Figure 5.  Compare the horizontal bounding box with the rotating bounding box

    图 6  消融实验中检测结果的可视化展示

    Figure 6.  Visualization of measurement results in ablation experiments

    图 7  在 HRSID 数据集上的船舶目标检测结果展示

    Figure 7.  Presentation of ship target detection results on the HRSID dataset

    表  1  RCAR-Net 消融实验

    Table  1.   RCAR-Net ablation experiment

    Baseline PVTv2 CARAFE Cutout mAP/%
    实验设置 69.42
    72.07
    73.09
    73.26
    76.39
    下载: 导出CSV

    表  2  本文方法与当前方法在 SSDD 和 HRSID 数据集上的对比

    Table  2.   Comparison of the proposed method with current methods on SSDD and HRSID datasets

    方法 mAP/%
    SSDD HRSID
    Faster R-CNN[26] 92.07 81.80
    Cascade RCNN[27] 91.61 81.89
    YOLOv4[28] 92.16 83.23
    SSD300[29] 87.06 79.05
    SSD512[29] 89.19 82.50
    DAPN[17] 90.60 88.20
    Double-Head R-CNN[18] 91.17 80.41
    PANet[19] 91.73 80.11
    RetinaNet[8] 86.37 77.32
    Quad-FPN[30] 92.84 86.12
    LFG-Net[31] 93.01 88.50
    RCAR-Net (本文) 93.63 90.37
    下载: 导出CSV
  • [1] MOREIRA A, PRATS-IRAOLA P, YOUNIS M, et al. A tutorial on synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Magazine, 2013, 1(1): 6-43. doi: 10.1109/MGRS.2013.2248301
    [2] REIGBER A, SCHEIBER R, JAGER M, et al. Very-high-resolution airborne synthetic aperture radar imaging: signal processing and applications[J]. Proceedings of the IEEE, 2013, 101(3): 759-783. doi: 10.1109/JPROC.2012.2220511
    [3] CUI J Y, JIA H C, WANG H P, et al. A fast threshold neural network for ship detection in large-scene SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 6016-6032. doi: 10.1109/JSTARS.2022.3192455
    [4] ZHANG T W, ZHANG X L, LI J W, et al. SAR ship detection dataset (SSDD): official release and comprehensive data analysis[J]. Remote Sensing, 2021, 13(18): 3690. doi: 10.3390/rs13183690
    [5] WEI S J, ZENG X F, QU Q Z, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254. doi: 10.1109/ACCESS.2020.3005861
    [6] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 580-587.
    [7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2017: 2999-3007.
    [9] LI J W, QU C W, SHAO J Q. Ship detection in SAR images based on an improved faster R-CNN[C]//Proceedings of the 2017 SAR in Big Data Era: Models, Methods and Applications. Piscataway: IEEE Press, 2017: 1-6.
    [10] WANG Y Y, WANG C, ZHANG H, et al. Automatic ship detection based on RetinaNet using multi-resolution Gaofen-3 imagery[J]. Remote Sensing, 2019, 11(5): 531. doi: 10.3390/rs11050531
    [11] ZHOU Z, CHEN J, HUANG Z X, et al. HRLE-SARDet: a lightweight SAR target detection algorithm based on hybrid representation learning enhancement[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5203922.
    [12] CHEN S W, CUI X C, WANG X S, et al. Speckle-free SAR image ship detection[J]. IEEE Transactions on Image Processing, 2021, 30: 5969-5983. doi: 10.1109/TIP.2021.3089936
    [13] DEVRIES T, TAYLOR G W, ASSIRI Y. Improved regularization of convolutional neural networks with cutout[EB/OL]. (2017-11-29)[2023-06-01]. http://arXiv.org/abs/1708.04552v2.
    [14] WANG W H, XIE E Z, LI X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424. doi: 10.1007/s41095-022-0274-8
    [15] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2021-06-03)[2023-06-02]. http://doi.org/10.48550/arXiv.1708.04552.
    [16] WANG W, XIE E, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]// 2021 IEEE/CVF International Conference on Computer Vision(ICCV). Piscataway: IEEE Press, 2021: 548- 558.
    [17] CUI Z Y, LI Q, CAO Z J, et al. Dense attention pyramid networks for multi- scale ship detection in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 8983-8997. doi: 10.1109/TGRS.2019.2923988
    [18] WU Y, CHEN Y P, YUAN L, et al. Rethinking classification and localization for object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 10183-10192.
    [19] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018/CVF IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 8759-8768.
    [20] NOH H, HONG S, HAN B. Learning deconvolution network for semantic segmentation[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2015: 1520-1528.
    [21] WANG J, CHEN K, XU R, et al. CARAFE: content-aware ReAssembly of FEatures[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 3007-3016.
    [22] LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 2117-2125.
    [23] XIAO M, HE Z, LI X Y, et al. Power transformations and feature alignment guided network for SAR ship detection[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4509405.
    [24] EVERINGHAM M, VAN GOOL L, WILLIAMS C K, et al. The pascal visual object classes (VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2): 303-338. doi: 10.1007/s11263-009-0275-4
    [25] LOSHCHILOV I, HUTTER F. Decoupled weight decay regularization[EB/OL]. (2019-01-04)[2023-06-07]. http://doi.org/10.48550/arXiv.1711.05101.
    [26] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2017: 1137-1149.
    [27] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 6154-6162.
    [28] WANG C Y, BOCHKOVSKIY A, LIAO H M. Scaled-YOLOv4: scaling cross stage partial network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2021: 13024-13033.
    [29] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multi-box detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [30] ZHANG T W, ZHANG X L, KE X. Quad-FPN: a novel quad feature pyramid network for SAR ship detection[J]. Remote Sensing, 2021, 13(14): 2771. doi: 10.3390/rs13142771
    [31] WEI S J, ZENG X F, ZHANG H, et al. LFG-net: low-level feature guided network for precise ship instance segmentation in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5231017.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  74
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-19
  • 录用日期:  2023-09-23
  • 网络出版日期:  2023-11-28
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答