留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多标签对抗领域自适应的行人属性识别算法

胡强梁 陈琳 尚明生

胡强梁,陈琳,尚明生. 基于多标签对抗领域自适应的行人属性识别算法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(7):2478-2487 doi: 10.13700/j.bh.1001-5965.2023.0386
引用本文: 胡强梁,陈琳,尚明生. 基于多标签对抗领域自适应的行人属性识别算法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(7):2478-2487 doi: 10.13700/j.bh.1001-5965.2023.0386
HU Q L,CHEN L,SHANG M S. Pedestrian attribute recognition algorithm based on multi-label adversarial domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2478-2487 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0386
Citation: HU Q L,CHEN L,SHANG M S. Pedestrian attribute recognition algorithm based on multi-label adversarial domain adaptation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2478-2487 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0386

基于多标签对抗领域自适应的行人属性识别算法

doi: 10.13700/j.bh.1001-5965.2023.0386
基金项目: 

国家自然科学基金(82030066,61902370); 重庆市教委在渝高校与中科院所合作重点项目(HZ2021008,HZ2021017)

详细信息
    通讯作者:

    E-mail:chenlin@cigit.ac.cn

  • 中图分类号: V351;TB391

Pedestrian attribute recognition algorithm based on multi-label adversarial domain adaptation

Funds: 

National Natural Science Foundation of China (82030066,61902370); The Key Project of Chongqing Municipal Education Commission based on Cooperation of Chongqing Local Universities and the Chinese Academy of Sciences (HZ2021008,HZ2021017)

More Information
  • 摘要:

    针对无监督领域自适应算法通常局限于单标签学习问题,难以适配针对行人属性的多标签分类任务,提出一种多标签对抗领域自适应的行人属性识别算法。为适应行人属性多标签领域迁移任务,基于多标签特征分离模块,利用特定类别语义对主干网络提取的深度特征进行属性分离,有效提取特定属性的表征信息。针对不同领域属性特征分布差异较大的难点,提出基于分类器复用的多标签领域鉴别模块,同时实现多标签领域对齐和多标签分类,有效利用预测的鉴别信息捕获特征分布的多模式结构。实验结果表明:所提算法对比基准模型有明显提升,在平均准确率、准确率、召回率和F1指标上分别提升了4.49%、5.5%、11.44%和5.89%;所提算法为多标签领域自适应学习提供了新思路。

     

  • 图 1  本文算法框架

    Figure 1.  Framework of the proposed algorithm

    图 2  对比实验效果

    Figure 2.  Comparison of experiment results

    图 3  RAPv1$ \Rrightarrow $PA100k的各属性准确率

    Figure 3.  Accuracy of each attribute on RAPv1$ \Rrightarrow $PA100k

    图 4  RAPv2$ \Rrightarrow $PA100k的各属性准确率

    Figure 4.  Accuracy of each attribute on RAPv2$ \Rrightarrow $PA100k

    图 5  属性识别效果分析(RAPv2$ \Rrightarrow $PA100k)

    Figure 5.  Performance of attribute recognition on RAPv2$ \Rrightarrow $PA100k

    表  1  实验软硬件环境

    Table  1.   Experimental hardware and software environment

    实验环境 配置
    CPU Intel Xeon E5-2680 v4
    GPU NVIDIA GeForce RTX 1080Ti
    操作系统 Ubuntu 18.04.2
    深度学习框架 Pytorch 1.9
    计算机语言 Python 3.8
    下载: 导出CSV

    表  2  模型参数设置

    Table  2.   Model parameters setting

    参数 数值
    图片预处理大小 256×192
    批处理大小 64
    学习率 0.01
    动量大小 0.9
    训练轮次 30
    下载: 导出CSV

    表  3  在RAPv1$ \Rrightarrow $PA100k上的消融实验

    Table  3.   Ablation experiments on RAPv1$ \Rrightarrow $PA100k

    算法 EmA/% EAcc/% EPrec/% ERec/% EF1/%
    ResNet50 64.85 42.22 65.75 49.71 53.44
    ResNet50+MFD 65.32 43.04 67.17 51.93 54.99
    ResNet50+MFD+DA 65.83 39.41 63.43 45.86 50.01
    ResNet50+MDD 66.34 42.14 66.95 47.99 52.99
    本文算法 69.34 47.72 64.33 61.15 59.33
    下载: 导出CSV

    表  4  在RAPv2$ \Rrightarrow $PA100k上的消融实验

    Table  4.   Ablation experiments on RAPv2$ \Rrightarrow $PA100k

    算法 EmA/% EAcc/% EPrec/% ERec/% EF1/%
    ResNet50 67.19 47.24 68.93 56.01 58.47
    ResNet50+MFD 68.82 47.92 73.15 55.28 59.57
    ResNet50+MFD+DA 67.74 44.51 66.22 53.26 55.66
    ResNet50+MDD 64.34 41.14 67.56 46.15 51.88
    本文算法 72.04 47.99 62.85 64.01 60.33
    下载: 导出CSV
  • [1] WANG X, ZHENG S F, YANG R, et al. Pedestrian attribute recognition: a survey[J]. Pattern Recognition, 2022, 121: 108220. doi: 10.1016/j.patcog.2021.108220
    [2] WILSON G, COOK D J. A survey of unsupervised deep domain adaptation[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(5): 1-46.
    [3] STACKE K, EILERTSEN G, UNGER J, et al. Measuring domain shift for deep learning in histopathology[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(2): 325-336. doi: 10.1109/JBHI.2020.3032060
    [4] YU H X, ZHENG W S, WU A, et al. Unsupervised person re-identification by soft multilabel learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 2148-2157.
    [5] WANG D, ZHANG S. Unsupervised person re-identification via multi-label classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 10978-10987.
    [6] LI D W, CHEN X T, HUANG K Q. Multi-attribute learning for pedestrian attribute recognition in surveillance scenarios[C]//Proceedings of 3rd IAPR Asian Conference on Pattern Recognition. Piscataway: IEEE Press, 2015: 111-115.
    [7] SARFRAZ M S, SCHUMANN A, WANG Y, et al. Deep view-sensitive pedestrian attribute inference in an end-to-end model[C]//Proceedings of the British Machine Vision Conference. London: BMVA Press, 2017, 134: 1-13.
    [8] YU K, LENG B, ZHANG Z, et al. Weakly-supervised learning of mid-level features for pedestrian attribute recognition and localization[C]//Proceedings of the British Machine Vision Conference. London: BMVA Press, 2017: 1-11.
    [9] LIU P, LIU X, YAN J, et al. Localization guided learning for pedestrian attribute recognition[C]//Proceedings of the British Machine Vision Conference. London: BMVA Press, 2018: 142-152.
    [10] LI D, CHEN X, ZHANG Z, et al. Pose guided deep model for pedestrian attribute recognition in surveillance scenarios[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE Press, 2018: 1-6.
    [11] WU M D, HUANG D, GUO Y F, et al. Distraction-aware feature learning for human attribute recognition via coarse-to-fine attention mechanism[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2020: 12394-12401.
    [12] ZHANG J, REN P, LI J. Deep template matching for pedestrian attribute recognition with the auxiliary supervision of attribute-wise keypoints[EB/OL]. (2020-11-13)[2020-05-26]. http://doi.org/10.48550/arXiv.2011.06798.
    [13] LIU X, ZHAO H, TIAN M, et al. Hydraplus-net: attentive deep features for pedestrian analysis[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 350-359.
    [14] GUO H, ZHENG K, FAN X, et al. Visual attention consistency under image transforms for multi-label image classification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 729-739.
    [15] JI Z, HE E, WANG H, et al. Image-attribute reciprocally guided attention network for pedestrian attribute recognition[J]. Pattern Recognition Letters, 2019, 120: 89-95. doi: 10.1016/j.patrec.2019.01.010
    [16] TAN Z, YANG Y, WAN J, et al. Attention-based pedestrian attribute analysis[J]. IEEE Transactions on Image Processing, 2019, 28(12): 6126-6140. doi: 10.1109/TIP.2019.2919199
    [17] ZHAO H, TIAN M, SUN S, et al. Spindle net: person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 1077-1085.
    [18] LI Q, ZHAO X, HE R, et al. Visual-semantic graph reasoning for pedestrian attribute recognition[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019, 33(1): 8634-8641.
    [19] WU J, LIU H, JIANG J, et al. Person attribute recognition by sequence contextual relation learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 30(10): 3398-3412. doi: 10.1109/TCSVT.2020.2982962
    [20] LONG M, CAO Y, WANG J, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the International Conference on Machine Learning. Piscataway: IEEE Press, 2015: 97-105.
    [21] LONG M, ZHU H, WANG J, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the International Conference on Machine Learning. Piscataway: IEEE Press, 2017: 2208-2217.
    [22] GANIN Y, LEMPITSKY V. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the International Conference on Machine Learning. Piscataway: IEEE Press, 2015, 9908: 1180-1189.
    [23] GHIFARY M, KLEIJN W B, ZHANG M, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 597-613.
    [24] BOUSMALIS K, TRIGEORGIS G, SILBERMAN N, et al. Domain separation networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems. Piscataway: IEEE Press, 2016, 29: 343-351.
    [25] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 7167-7176.
    [26] PEI Z, CAO Z, LONG M, et al. Multi-adversarial domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2018, 32(1): 3934-3941.
    [27] HOFFMAN J, TZENG E, PARK T, et al. Cycada: cycle-consistent adversarial domain adaptation[C]//Proceedings of the International Conference on Machine Learning. Piscataway: IEEE Press, 2018: 1989-1998.
    [28] LONG M, CAO Z, WANG J, et al. Conditional adversarial domain adaptation[C]//Proceedings of the Annual Conference on Neural Information Processing Systems. Piscataway: IEEE Press, 2018, 31: 1-11.
    [29] SAITO K, WATANABE K, USHIKU Y, et al. Maximum classifier discrepancy for unsupervised domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3723-3732.
    [30] CHEN T, XU M, HUI X, et al. Learning semantic-specific graph representation for multi-label image recognition[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2019: 522-531.
    [31] CHEN L, CHEN H, WEI Z, et al. Reusing the task-specific classifier as a discriminator: discriminator-free adversarial domain adaptation[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2022: 7181-7190.
    [32] JIA J, HUANG H, YANG W, et al. Rethinking of pedestrian attribute recognition: realistic datasets with efficient method[EB/OL]. (2020-05-25)[2020-05-26]. http://doi.org/10.48550/arXiv.2005.11909.
    [33] LI D, ZHANG Z, CHEN X, et al. A richly annotated pedestrian dataset for person retrieval in real surveillance scenarios[J]. IEEE Transactions on Image Processing, 2018, 28(4): 1575-1590.
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  394
  • HTML全文浏览量:  96
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 录用日期:  2023-09-23
  • 网络出版日期:  2023-11-29
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答