留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IcD-FDRL的应急监控视频边缘智能传输优化

李彦 万征 邓承志 汪胜前

李彦,万征,邓承志,等. 基于IcD-FDRL的应急监控视频边缘智能传输优化[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(7):2314-2329 doi: 10.13700/j.bh.1001-5965.2023.0378
引用本文: 李彦,万征,邓承志,等. 基于IcD-FDRL的应急监控视频边缘智能传输优化[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(7):2314-2329 doi: 10.13700/j.bh.1001-5965.2023.0378
LI Y,WAN Z,DENG C Z,et al. Edge-intelligent transmission optimization of emergency surveillance video based on IcD-FDRL[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2314-2329 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0378
Citation: LI Y,WAN Z,DENG C Z,et al. Edge-intelligent transmission optimization of emergency surveillance video based on IcD-FDRL[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(7):2314-2329 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0378

基于IcD-FDRL的应急监控视频边缘智能传输优化

doi: 10.13700/j.bh.1001-5965.2023.0378
基金项目: 

国家自然科学基金(61961021); 江西省教育厅科技计划重点项目(GJJ180251);江西水利电力大学博士科研启动项目(2024kyqd062)

详细信息
    通讯作者:

    E-mail:wanzheng97@163.com

  • 中图分类号: TN929.5

Edge-intelligent transmission optimization of emergency surveillance video based on IcD-FDRL

Funds: 

National Natural Science Foundation of China (61961021); Key Project of Science and Technology Research of Jiangxi Provincial Education Department (GJJ180251); Start-up Project of Doctoral Research in Jiangxi University of Water Resources and Electric Power (2024kyqd062)

More Information
  • 摘要:

    应急监控视频传输作为提升突发事件监测、公共安全事件处理、灾后重建等情况下应急工作处理能力的关键技术手段,逐渐成为国家智慧应急体系建设重点支持的专业领域和研究方向。随着5G技术、决策型人工智能技术的不断发展,为实现自适应的高质量应急监控视频传输,针对局部区域内公共安全和应急救援监控,建立一种应急监控视频边缘智能传输架构,设计了应急监控视频重要性度量方法,提出簇内动态联邦深度强化学习(IcD-FDRL)算法,并实现了基于簇内动态联邦深度强化学习的应急监控视频边缘智能传输优化,以打破监控数据孤岛,提升算法学习效率,实现重要应急监控视频的低时延、低成本、高质量和优先传输。通过仿真实验进行了对比分析,验证了所提模型和算法的有效性。

     

  • 图 1  应急监控视频边缘智能传输网络拓扑结构

    Figure 1.  Topology of edge-intelligent transmission networks for emergency surveillance video

    图 2  基于DQN算法的应急监控视频智能传输和转码优化

    Figure 2.  Intelligent transmission and transcoding optimization of emergency surveillance video based on DQN algorithm

    图 3  边缘簇内基于FDRL的应急监控视频边缘智能传输优化架构

    Figure 3.  Architecture for edge-intelligent transmission optimization of emergency surveillance video based on FDRL in edge cluster

    图 4  Loss函数收敛情况对比

    Figure 4.  Comparison of Loss function convergence

    图 5  奖励函数稳定性对比

    Figure 5.  Comparison of reward function stability

    图 6  平均时延对比

    Figure 6.  Comparison of average delay

    图 7  平均QoE对比

    Figure 7.  Comparison of average QoE

    图 8  平均传输成本对比

    Figure 8.  Comparison of average transmission cost

    图 9  边缘簇内不同边缘节点数量时平均QoE对比

    Figure 9.  Comparison of average QoE for different edge nodes in edge cluster

    图 10  边缘簇内不同边缘节点数量时平均传输成本对比

    Figure 10.  Comparison of average transmission cost for different edge nodes in edge cluster

    图 11  不同监控终端数量时平均QoE对比

    Figure 11.  Comparison of average QoE for different monitored terminals

    图 12  不同监控终端数量时平均传输成本对比

    Figure 12.  Comparison of average transmission cost for different monitored terminals

    表  1  实验中主要参数设置

    Table  1.   Setting of main parameters in experiments

    参数 取值 参数 取值
    $ \alpha $ 0.4 $ {\omega _5} $ 0.1
    $ \beta $ 0.3 $ {\omega _6} $ 0.1
    $ \delta $ 0.3 Nc 7
    $ \rho $ 7 K 10
    学习率 0.01 $ {N_{{\text{user}}}} $ 30
    $ {\mu _1} $ 1 $ \{ N_{{\text{cpu}}}^b\} $ $ \left\{ {2,4,6,8} \right\} $
    $ {\mu _2} $ 0 $ {{D}}/{\mathrm{s}} $ 10
    $ {\omega _1} $ 1.2 $ \gamma $ 0.9
    $ {\omega _2} $ 1.2 $ \varepsilon $ 0.9
    $ {\omega _3} $ 1.0 $ \psi $ 600
    $ {\omega _4} $ 1.0 $ \lambda $ 0.65
    下载: 导出CSV

    表  2  应急监控视频优先传输准确率对比

    Table  2.   Comparison of priority transmission accuracy of emergency surveillance video %

    算法 摄像头数量为70 摄像头数量为140
    DRL-CCT[30] 92.5 85.1
    FDRL-CBA[9] 97.2 92.3
    IcD-FDRL-EIT 98.3 93.5
    下载: 导出CSV
  • [1] 张铮, 李政华. 中国特色应急管理制度体系构建: 现实基础、存在问题与发展策略[J]. 管理世界, 2022, 38(1): 138-144. doi: 10.3969/j.issn.1002-5502.2022.01.010

    ZHANG Z, LI Z H. Emergency management system construction with Chinese characteristics: realistic foundation, existing problems and development strategy[J]. Journal of Management World, 2022, 38(1): 138-144(in Chinese). doi: 10.3969/j.issn.1002-5502.2022.01.010
    [2] 刘鲲. 智能视频监控中事件理解的关键技术研究[D]. 北京: 北京邮电大学, 2021.

    LIU K. Research on key technologies of event understanding in intelligent video surveillance[D]. Beijing: Beijing University of Posts and Telecommunications, 2021(in Chinese).
    [3] 黄韬, 刘江, 汪硕, 等. 未来网络技术与发展趋势综述[J]. 通信学报, 2021, 42(1): 130-150. doi: 10.11959/j.issn.1000-436x.2021006

    HUANG T, LIU J, WANG S, et al. Survey of the future network technology and trend[J]. Journal on Communications, 2021, 42(1): 130-150(in Chinese). doi: 10.11959/j.issn.1000-436x.2021006
    [4] 伏玉笋, 杨根科. 人工智能在移动通信中的应用: 挑战与实践[J]. 通信学报, 2020, 41(9): 190-201.

    FU Y S, YANG G K. Application of artificial intelligence in mobile communication: challenge and practice[J]. Journal on Communications, 2020, 41(9): 190-201(in Chinese).
    [5] 梁应敞, 谭俊杰, NIYATO D. 智能无线通信技术研究概况[J]. 通信学报, 2020, 41(7): 1-17. doi: 10.11959/j.issn.1000-436x.2020145

    LIANG Y C, TAN J J, NIYATO D. Overview on intelligent wireless communication technology[J]. Journal on Communications, 2020, 41(7): 1-17(in Chinese). doi: 10.11959/j.issn.1000-436x.2020145
    [6] LI Y. A suvey on edge intelligent video surveillance with deep reinforcement learning[J]. Journal of Network Intelligence, 2022, 7(1): 70-83.
    [7] WANG X F, LI R B, WANG C Y, et al. Attention-weighted federated deep reinforcement learning for device-to-device assisted heterogeneous collaborative edge caching[J]. IEEE Journal on Selected Areas in Communications, 2021, 39(1): 154-169. doi: 10.1109/JSAC.2020.3036946
    [8] LEI M, LI Q, GE X H, et al. Partially collaborative edge caching based on federated deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2023, 72(1): 1389-1394. doi: 10.1109/TVT.2022.3206876
    [9] LI Y. Federated deep reinforcement learning-based caching and bitrate adaptation for VR panoramic video in clustered MEC networks[J]. Electronics, 2022, 11(23): 3968. doi: 10.3390/electronics11233968
    [10] WEI Y K, ZHOU S P, LENG S P, et al. Federated learning empowered end-edge-cloud cooperation for 5G HetNet security[J]. IEEE Network, 2021, 35(2): 88-94. doi: 10.1109/MNET.011.2000340
    [11] QUINTANA-RAMIREZ I, SEQUEIRA L, RUIZ-MAS J. An edge-cloud approach for video surveillance in public transport vehicles[J]. IEEE Latin America Transactions, 2021, 19(10): 1763-1771. doi: 10.1109/TLA.2021.9477277
    [12] YAN K P, SHAN H G, SUN T X, et al. Reinforcement learning-based mobile edge computing and transmission scheduling for video surveillance[J]. IEEE Transactions on Emerging Topics in Computing, 2022, 10(2): 1142-1156.
    [13] KE R M, ZHUANG Y F, PU Z Y, et al. A smart, efficient, and reliable parking surveillance system with edge artificial intelligence on IoT devices[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4962-4974. doi: 10.1109/TITS.2020.2984197
    [14] MING Z X, CHEN J S, CUI L Z, et al. Edge-based video surveillance with graph-assisted reinforcement learning in smart construction[J]. IEEE Internet of Things Journal, 2022, 9(12): 9249-9265. doi: 10.1109/JIOT.2021.3090513
    [15] HOU B, ZHANG J X. Real-time surveillance video salient object detection using collaborative cloud-edge deep reinforcement learning[C]//Proceedings of the International Joint Conference on Neural Networks. Piscataway: IEEE Press, 2021: 1-8.
    [16] KIM D, KIM K, PARK S. Automatic PTZ camera control based on deep-Q network in video surveillance system[C]//Proceedings of the International Conference on Electronics, Information, and Communication. Piscataway: IEEE Press, 2019: 1-3.
    [17] 施巍松, 张星洲, 王一帆, 等. 边缘计算: 现状与展望[J]. 计算机研究与发展, 2019, 56(1): 69-89. doi: 10.7544/issn1000-1239.2019.20180760

    SHI W S, ZHANG X Z, WANG Y F, et al. Edge computing: state-of-the-art and future directions[J]. Journal of Computer Research and Development, 2019, 56(1): 69-89(in Chinese). doi: 10.7544/issn1000-1239.2019.20180760
    [18] 赵梓铭, 刘芳, 蔡志平, 等. 边缘计算: 平台、应用与挑战[J]. 计算机研究与发展, 2018, 55(2): 327-337. doi: 10.7544/issn1000-1239.2018.20170228

    ZHAO Z M, LIU F, CAI Z P, et al. Edge computing: platforms, applications and challenges[J]. Journal of Computer Research and Development, 2018, 55(2): 327-337(in Chinese). doi: 10.7544/issn1000-1239.2018.20170228
    [19] 施巍松, 孙辉, 曹杰, 等. 边缘计算: 万物互联时代新型计算模型[J]. 计算机研究与发展, 2017, 54(5): 907-924. doi: 10.7544/issn1000-1239.2017.20160941

    SHI W S, SUN H, CAO J, et al. Edge computing: an emerging computing model for the Internet of everything era[J]. Journal of Computer Research and Development, 2017, 54(5): 907-924(in Chinese). doi: 10.7544/issn1000-1239.2017.20160941
    [20] HU Y C, PATEL M, SABELLA D, et al. Mobile edge computing-a key technology towards 5G[J]. European Telecommunications Standards Institute, 2015: 1-16.
    [21] TALEB T, SAMDANIS K, MADA B, et al. On multi-access edge computing: a survey of the emerging 5G network edge cloud architecture and orchestration[J]. IEEE Communications Surveys & Tutorials, 2017, 19(3): 1657-1681.
    [22] 吴冀衍, 程渤, 南国顺, 等. 面向异构无线网移动视频传输的联合信源信道编码方式[J]. 计算机学报, 2015, 38(2): 439-454.

    WU J Y, CHENG B, NAN G S, et al. A novel joint source-channel coding scheme for mobile video delivery in heterogeneous wireless networks[J]. Chinese Journal of Computers, 2015, 38(2): 439-454(in Chinese).
    [23] SAHA N, ZANGOOEI M, GOLKARIFARD M, et al. Deep reinforcement learning approaches to network slice scaling and placement: a survey[J]. IEEE Communications Magazine, 2023, 61(2): 82-87. doi: 10.1109/MCOM.006.2200534
    [24] CHIEN W C, WENG H Y, LAI C F. Q-learning based collaborative cache allocation in mobile edge computing[J]. Future Generation Computer Systems, 2020, 102: 603-610.
    [25] WANG S, ZHANG X, ZHANG Y, et al. A survey on mobile edge networks: convergence of computing, caching and communications[J]. IEEE Access, 2017, 5: 6757-6779. doi: 10.1109/ACCESS.2017.2685434
    [26] 李佳, 谢人超, 贾庆民, 等. 面向视频流的MEC缓存转码联合优化研究[J]. 电信科学, 2018, 34(8): 76-86.

    LI J, XIE R C, JIA Q M, et al. A survey on joint optimization of MEC caching and transcoding for video streaming[J]. Telecommunications Science, 2018, 34(8): 76-86(in Chinese).
    [27] MANIOTIS P, THOMOS N. Viewport-aware deep reinforcement learning approach for 360° video caching[J]. IEEE Transactions on Multimedia, 2021, 24: 386-399.
    [28] ZHONG C, GURSOY M C, VELIPASALAR S. Deep reinforcement learning-based edge caching in wireless networks[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(1): 48-61. doi: 10.1109/TCCN.2020.2968326
    [29] PANG Z Y, SUN L F, HUANG T C, et al. Towards QoS-aware cloud live transcoding: a deep reinforcement learning approach[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE Press, 2019: 670-675.
    [30] WAN Z, LI Y. Deep reinforcement learning-based collaborative video caching and transcoding in clustered and intelligent edge B5G networks[J]. Wireless Communications and Mobile Computing, 2020, 2020(1): 6684293.
    [31] AN B, SUN S, WANG R D. Deep reinforcement learning for quantitative trading: challenges and opportunities[J]. IEEE Intelligent Systems, 2022, 37(2): 23-26. doi: 10.1109/MIS.2022.3165994
    [32] HE X M, WANG K, HUANG H W, et al. Green resource allocation based on deep reinforcement learning in content-centric IoT[J]. IEEE Transactions on Emerging Topics in Computing, 2020, 8(3): 781-796. doi: 10.1109/TETC.2018.2805718
    [33] MENG F, CHEN P, WU L N, et al. Power allocation in multi-user cellular networks: deep reinforcement learning approaches[J]. IEEE Transactions on Wireless Communications, 2020, 19(10): 6255-6267. doi: 10.1109/TWC.2020.3001736
    [34] PARK S, KIM J, KWON D, et al. Joint offloading and streaming in mobile edges: a deep reinforcement learning approach[C]//Proceedings of the IEEE VTS Asia Pacific Wireless Communications Symposium. Piscataway: IEEE Press, 2019: 1-4.
    [35] ZHANG H, WU W J, WANG C Y, et al. Deep reinforcement learning-based offloading decision optimization in mobile edge computing[C]//Proceedings of the IEEE Wireless Communications and Networking Conference. Piscataway: IEEE Press, 2019: 1-7.
    [36] HE Y, ZHAO N, YIN H X. Integrated networking, caching, and computing for connected vehicles: a deep reinforcement learning approach[J]. IEEE Transactions on Vehicular Technology, 2018, 67(1): 44-55. doi: 10.1109/TVT.2017.2760281
    [37] WANG F X, ZHANG C, WANG F, et al. Intelligent edge-assisted crowdcast with deep reinforcement learning for personalized QoE[C]//Proceedings of the IEEE Conference on Computer Communications. Piscataway: IEEE Press, 2019: 910-918.
    [38] CHEN M H, PONEC M, SENGUPTA S, et al. Utility maximization in peer-to-peer systems with applications to video conferencing[J]. IEEE/ACM Transactions on Networking, 2012, 20(6): 1681-1694. doi: 10.1109/TNET.2012.2201166
    [39] SUTTON R S, BARTO A G. Reinforcement learning: an introduction[M]. 2nd ed. Cambridge: MIT Press, 2018.
    [40] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning[J]. Nature, 2015, 518(7540): 529-533. doi: 10.1038/nature14236
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  54
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-16
  • 录用日期:  2024-03-29
  • 网络出版日期:  2024-04-20
  • 整期出版日期:  2025-07-31

目录

    /

    返回文章
    返回
    常见问答