留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于图论的变换器冗余开关自动识别方法

莫李平 宋吉祥 陈桂鹏

莫李平,宋吉祥,陈桂鹏. 基于图论的变换器冗余开关自动识别方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(5):1449-1456 doi: 10.13700/j.bh.1001-5965.2023.0358
引用本文: 莫李平,宋吉祥,陈桂鹏. 基于图论的变换器冗余开关自动识别方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(5):1449-1456 doi: 10.13700/j.bh.1001-5965.2023.0358
MO L P,SONG J X,CHEN G P. Auto identification method for redundant switches in converters based on graph theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1449-1456 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0358
Citation: MO L P,SONG J X,CHEN G P. Auto identification method for redundant switches in converters based on graph theory[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1449-1456 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0358

基于图论的变换器冗余开关自动识别方法

doi: 10.13700/j.bh.1001-5965.2023.0358
基金项目: 

广东省基础与应用基础研究基金(2022A1515011616);中央高校基本科研业务费专项资金(20720220083) 

详细信息
    通讯作者:

    E-mail:cgp2017@xmu.edu.cn

  • 中图分类号: TM46;O157.5

Auto identification method for redundant switches in converters based on graph theory

Funds: 

Guangdong Basic and Applied Basic Research Foundation (2022A1515011616); The Fundamental Research Funds for the Central Universities (20720220083) 

More Information
  • 摘要:

    电能变换需求日益增长,推演具有不同性能的新型变换器成为研究热点。当前的推演方法大多未考虑变换器开关冗余的因素,导致推演结果中同时存在含冗余开关的变换器和不含冗余开关的变换器。为从海量的推演结果中快速剔除含冗余开关的变换器,开展了变换器冗余开关自动识别研究。分析变换器冗余开关与其有效开关模态的关系,并在此基础上归纳冗余开关的识别准则;基于图论将识别准则转化为对应的图准则;应用图搜索算法结合图准则建立冗余开关自动识别方法。为验证冗余开关自动识别方法的可行性,将其用于识别现存单电感多端口变换器的冗余开关,识别结果表明:所提方法可以批量、准确地识别出变换器的所有冗余开关,验证了方法的可行性。

     

  • 图 1  导通冗余开关简化前后变换器的有效开关模态种类

    Figure 1.  Valid switching modes types of converters before and after turn-on redundant switches are simplified

    图 2  关断冗余开关删除前后变换器的有效开关模态种类

    Figure 2.  Valid switching modes types of converters before and after turn-off redundant switches are deleted

    图 3  冗余开关自动识别总体流程

    Figure 3.  Main flowchart of auto identification of redundant switches

    图 4  原变换器邻接矩阵及简化开关S1和删除开关S1后的邻接矩阵

    Figure 4.  Adjacent matrix of original converter and adjacent matrices of converters after switch S1 are simplified or deleted

    图 5  电路正常工作的基本原理

    Figure 5.  Fundamental principles of workable circuits

    图 6  基本原理1对应的4种无效开关模态

    Figure 6.  Four kinds of invalid switching modes based on fundamental principles of workable circuits 1

    图 7  有效开关模态回路集获取流程

    Figure 7.  Flowchart of obtaining loop set of valid switching modes

    图 8  自动识别出的20个含冗余开关的单电感多端口变换器

    Figure 8.  20 automatically identified single-inductor multi-port converters with redundant switches

    表  1  图1变换器的导通冗余开关识别结果

    Table  1.   Identification results of turn-on redundant switch for converter in Fig. 1

    变化器简图 有效开关
    模态
    回路集与识别结果

    原变换器
    vsm1={S2}
    vsm2={S1, S3}
    vsm3={S1, S4}
    $ \begin{gathered} {{{P}}_{{\mathrm{VSM}}}} = \left\{ {p_{{\mathrm{vsm}}1}} = (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{2 {\text{-}} {\rm{np}}}}),\right. \\ \qquad{p_{{\mathrm{vsm}}2}} = (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{3 {\text{-}} {\rm{np}}}}), {p_{{\mathrm{vsm}}3}} = \\ \qquad \left.(L,{P_{1 {\text{-}} {\rm{pn}}}})\right\} \\ \end{gathered} $

    简化S1
    vsm1={S2}
    vsm2={S3}
    vsm3={S4}
    $\begin{gathered} {{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_1 {\text{-}} {\mathrm{on}}}} = \left\{ {p_{{\rm{vsm}}1}} = (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{2 {\text{-}} {\rm{np}}}}),\right. \\ \qquad {p_{{\rm{vsm}}2}} = (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{3 {\text{-}} {\rm{np}}}}), {p_{{\rm{vsm}}3}} = \\ \qquad \left. (L,{P_{1 {\text{-}} {\rm{pn}}}}) \right\} \\ \end{gathered}$
    PVMS=${{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_1 {\text{-}} {\mathrm{on}}}} $,S1导通冗余

    简化S2
    vsm1={S1}
    vsm2={S3}
    vsm3={S4}
    $\begin{gathered} {{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_2 {\text{-}} {\mathrm{on}}}} = \left\{ {p_{{\rm{vsm}}1}} = (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{2 {\text{-}} {\rm{np}}}}), \right. \\ \qquad {p_{{\rm{vsm}}2}} = (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{2 {\text{-}} {\rm{np}}}}), {p_{{\rm{vsm}}3}} = \\ \qquad \left. (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{2 {\text{-}} {\rm{np}}}}) \right\} \\ \end{gathered} $
    PVMS≠${{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_2 {\text{-}} {\mathrm{on}}}} $,S2不是导通冗余

    简化S3
    vsm1={S1}
    vsm2={S2}
    $\begin{gathered} {{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_3 {\text{-}} {\mathrm{on}}}} = \left\{ {p_{{\rm{vsm}}1}} = (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{3 {\text{-}} {\rm{np}}}}), \right. \\ \left.{p_{{\rm{vsm}}2}} = (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{2 {\text{-}} {\rm{np}}}}) \right\} \end{gathered} $
    PVSM≠${{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_3 {\text{-}} {\mathrm{on}}}} $,S3不是导通冗余

    简化S4
    vsm1={S1}
    vsm2={S2}
    $ \begin{gathered} {{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_4 {\text{-}} {\mathrm{on}}}} = \left\{ {p_{{\rm{vsm}}1}} = (L,{P_{1 {\text{-}} {\rm{pn}}}}),\right. \\ \left.{p_{{\rm{vsm}}2}} = (L,{P_{1 {\text{-}} {\rm{pn}}}},{P_{2 {\text{-}} {\rm{np}}}}) \right\} \end{gathered} $
    PVMS≠${{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_4 {\text{-}} {\mathrm{on}}}} $,S4不是导通冗余
    下载: 导出CSV

    表  2  图2变换器的关断冗余开关识别结果

    Table  2.   Identification results of turn-off redundant switch for converter in Fig. 2

    变化器简图 有效开关
    模态
    回路集与识别结果

    原变换器
    vsm1={S1}
    vsm2={S2, S3}
    vsm3={S2, S5}
    vsm4={S3, S4}
    $ \begin{gathered} {{{P}}}_{{\mathrm{VSM}}}= \left\{{p}_{{\rm{vsm}}1}=(L,{P}_{3{\text{-}} {\rm{pn}}}),\right. \\ \qquad {p}_{{\rm{vsm}}2}=(L,{P}_{3{\text{-}} {\rm{pn}}},{P}_{1{\text{-}} {\rm{np}}}), \\ \qquad {p}_{{\rm{vsm}}3}=(L,{P}_{3{\text{-}} {\rm{pn}}},{P}_{2{\text{-}} {\rm{pn}}}, {P}_{1{\text{-}} {\rm{np}}}), \\ \qquad \left.{p}_{{\rm{vsm}}4}=(L,{P}_{3{\text{-}} {\rm{pn}}},{P}_{2{\text{-}} {\rm{np}}})\right\} \\ \end{gathered} $

    删除S1
    vsm1={S4, S5}
    vsm2={S2, S3}
    vsm3={S2, S5}
    vsm4={S3, S4}
    $ \begin{gathered} {{{P}}}_{{\mathrm{VSM}}{\text{-}}{{S}}_1{\text{-}}{\mathrm{off}}}= \left\{{p}_{{\rm{vsm}}1}=(L,{P}_{3{\text{-}} {\rm{pn}}}),\right. \\ \qquad {p}_{{\rm{vsm}}2}=(L,{P}_{3{\text{-}} {\rm{pn}}},{P}_{1{\text{-}} {\rm{np}}}), \\ \qquad {p}_{{\rm{vsm}}3}=(L,{P}_{3{\text{-}} {\rm{pn}}},{P}_{2{\text{-}} {\rm{pn}}}, {P}_{1{\text{-}} {\rm{np}}}), \\ \qquad \left.{p}_{{\rm{vsm}}4}=(L,{P}_{3{\text{-}} {\rm{pn}}},{P}_{2{\text{-}} {\rm{np}}})\right\} \\ \end{gathered} $
    PVSM=${{{P}}}_{{\mathrm{VSM}}{\text{-}}{{S}}_1{\text{-}}{\mathrm{off}}} $,S1关断冗余

    删除S2
    vsm1={S1}
    vsm2={S3, S4}
    $ \begin{gathered} {{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_2 {\text{-}} {\mathrm{off}}}} = \left\{ {p_{{\rm{vsm}}1}} = (L,{P_{3 {\text{-}} {\rm{pn}}}}),\right. \\ \qquad \left.{p_{{\rm{vsm}}2}} = (L,{P_{3 {\text{-}} {\rm{pn}}}},{P_{2 {\text{-}} {\rm{np}}}}) \right\} \\ \end{gathered} $
    PVSM≠$ {{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_2 {\text{-}} {\mathrm{off}}}} $,S2不是关断冗余

    删除S3
    vsm1={S1}
    vsm2={S2, S5}
    $ \begin{gathered} {{{P}}}_{{\mathrm{VSM}}{\text{-}}{{S}}_3{\text{-}}{\mathrm{off}}}= \left\{{p}_{{\rm{vsm}}1}=(L,{P}_{3{\text{-}} {\rm{pn}}}),\right. \\ \qquad \left.{p}_{{\rm{vsm}}2}=(L,{P}_{3{\text{-}} {\rm{pn}}},{P}_{2{\text{-}} {\rm{pn}}}, {P}_{1{\text{-}} {\rm{np}}})\right\} \\ \end{gathered} $
    PVSM≠${{{P}}}_{{\mathrm{VSM}}{\text{-}}{{S}}_3{\text{-}}{\mathrm{off}}} $,S3不是关断冗余

    删除S4
    vsm1={S1}
    vsm2={S2, S3}
    vsm3={S2, S5}
    $ \begin{gathered}{{{P}}}_{{\mathrm{VSM}}{\text{-}}{{S}}_4{\text{-}}{\mathrm{off}}}= \left\{{p}_{{\rm{vsm}}1}=(L,{P}_{3{\text{-}} {\rm{pn}}}),\right. \\ \qquad {p}_{{\rm{vsm}}2}=(L,{P}_{3{\text{-}} {\rm{pn}}},{P}_{1{\text{-}} {\rm{np}}}), \\ \qquad \left.{p}_{{\rm{vsm}}3}=(L,{P}_{3{\text{-}} {\rm{pn}}},{P}_{2{\text{-}} {\rm{pn}}},\right. \\ \qquad \left. {P}_{1{\text{-}} {\rm{np}}})\right\} \\ \end{gathered} $
    PVSM≠${{{P}}}_{{\mathrm{VSM}}{\text{-}}{{S}}_4{\text{-}}{\mathrm{off}}} $,S4不是关断冗余

    删除S5
    vsm1={S1}
    vsm2={S2, S3}
    vsm3={S3, S4}
    $ \begin{gathered}{{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_5 {\text{-}} {\mathrm{off}}}} = \left\{ {p_{{\rm{vsm}}1}} = (L,{P_{3 {\text{-}} {\rm{pn}}}}),\right. \\ \qquad {p_{{\rm{vsm}}2}} = (L,{P_{3 {\text{-}} {\rm{pn}}}},{P_{1 {\text{-}} {\rm{np}}}}), \\ \qquad \left.{p_{{\rm{vsm}}2}} = (L,{P_{3 {\text{-}} {\rm{pn}}}},{P_{2 {\text{-}} {\rm{np}}}}) \right\} \\ \end{gathered} $
    PVSM≠${{{P}}_{{\mathrm{VSM}} {\text{-}} {{S}}_5 {\text{-}} {\mathrm{off}}}} $,S5不是关断冗余
    下载: 导出CSV
  • [1] TANG Z T, YANG Y H, BLAABJERG F. Power electronics: the enabling technology for renewable energy integration[J]. CSEE Journal of Power and Energy Systems, 2022, 8(1): 39-52.
    [2] EHSANI M, SINGH K V, BANSAL H O, et al. State of the art and trends in electric and hybrid electric vehicles[J]. Proceedings of the IEEE, 2021, 109(6): 967-984. doi: 10.1109/JPROC.2021.3072788
    [3] PENG W Y, DU S J. The advances in conversion techniques in triboelectric energy harvesting: a review[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2023, 70(7): 3049-3062. doi: 10.1109/TCSI.2023.3261780
    [4] KIM J S, YOON J O, CHOI B D. A high-light-load-efficiency low-ripple-voltage PFM buck converter for IoT applications[J]. IEEE Transactions on Power Electronics, 2022, 37(5): 5763-5772. doi: 10.1109/TPEL.2021.3131594
    [5] CHENG K W E, YE Y M. Duality approach to the study of switched-inductor power converters and its higher-order variations[J]. IET Power Electronics, 2015, 8(4): 489-496. doi: 10.1049/iet-pel.2014.0689
    [6] GNANASAMBANDAM K, RATHORE A K, EDPUGANTI A, et al. Current-fed multilevel converters: an overview of circuit topologies, modulation techniques, and applications[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3382-3401. doi: 10.1109/TPEL.2016.2585576
    [7] 胡雪峰, 王琳, 代国瑞, 等. 单开关高增益Boost-Sepic集成变换器[J]. 中国电机工程学报, 2015, 35(8): 2018-2025.

    HU X F, WANG L, DAI G R, et al. High step-up Boost-Sepic integrated converters with a single switch[J]. Proceedings of the CSEE, 2015, 35(8): 2018-2025(in Chinese).
    [8] 荣德生, 孙瑄瑨. 高增益耦合电感组合Buck-Boost-Zeta变换器[J]. 中国电机工程学报, 2020, 40(14): 4590-4601.

    RONG D S, SUN X J. High gain coupled inductance combination Buck-Boost-Zeta converter[J]. Proceedings of the CSEE, 2020, 40(14): 4590-4601(in Chinese).
    [9] DE ANDRADE J M, SALVADOR M A, COELHO R F, et al. General method for synthesizing high gain step-up DC-DC converters based on differential connections[J]. IEEE Transactions on Power Electronics, 2020, 35(12): 13239-13254. doi: 10.1109/TPEL.2020.2996501
    [10] MO L P, CHEN G P, HUANG J M. From components to converters: a fundamental topology derivation method for single-inductor multi-input multi-output converters based on graph theory[C]// Proceedings of the IEEE International Conference on Power Electronics, Computer Applications. Piscataway: IEEE Press, 2021: 458-463.
    [11] DONG M, LIANG R J, YANG J, et al. Topology derivation of multiport DC-DC converters based on reinforcement learning[J]. IEEE Transactions on Power Electronics, 2023, 38(4): 5055-5064. doi: 10.1109/TPEL.2023.3235053
    [12] HUANG Z Q, ZHOU D H, SHEN Z W, et al. Directed graph-based topology derivation method for single-stage multiport inverters[J]. IEEE Transactions on Power Electronics, 2023, 38(11): 14614-14627. doi: 10.1109/TPEL.2023.3305988
    [13] CHEN Y, BAI J B, KANG Y. A nonisolated single-inductor multiport DC-DC topology deduction method based on reinforcement learning[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(6): 6572-6585. doi: 10.1109/JESTPE.2021.3128270
    [14] LI H, LI Y M, WANG W C, et al. Programmable topology deduction algorithm for S1D2C1L1 type DC-DC converters based on graph theory[C]//Proceedings of the 14th International FLINS Conference. Singapore: World Scientific, 2020.
    [15] 李虹, 王文财, 李亚敏, 等. 基于图论的S1D1L2C1型DC-DC变换器可编程拓扑搜索算法[J]. 中国电机工程学报, 2021, 41(16): 5670-5683.

    LI H, WANG W C, LI Y M, et al. Programmable topology searching algorithm for S1D1L2C1 type DC-DC converters based on graph theory[J]. Proceedings of the CSEE, 2021, 41(16): 5670-5683(in Chinese).
    [16] CHEN G P, JIN Z F, LIU Y W, et al. Programmable topology derivation and analysis of integrated three-port DC-DC converters with reduced switches for low-cost applications[J]. IEEE Transactions on Industrial Electronics, 2019, 66(9): 6649-6660.
    [17] MO L P, HUANG J M, CHEN G P, et al. Computer-aided systematic topology derivation of single-inductor multi-input multi-output converters from working principle[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(6): 2637-2649. doi: 10.1109/TCSI.2022.3159718
    [18] ERICKSON R W, MAKSIMOVIĆ D. Fundamentals of power electronics[M]. Berlin: Springer, 2001.
    [19] 张永, 李睿, 年福忠. 算法与数据结构[M]. 北京: 国防工业出版社, 2008.

    ZHANG Y, LI R, NIAN F Z. Algorithms and data structures[M]. Beijing: National Defense Industry Press, 2008(in Chinese).
    [20] XIE B Z, QI C, BEN H Q, et al. The applications of graph theory in electric network[C]//Proceedings of the International Conference on Sensing, Diagnostics, Prognostics, and Control. Piscataway: IEEE Press, 2019: 780-784.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  26
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 录用日期:  2023-10-11
  • 网络出版日期:  2024-01-23
  • 整期出版日期:  2025-05-31

目录

    /

    返回文章
    返回
    常见问答