留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差分进化算法的SIMO Buck变换器最优动态响应搜索

李丹 崔文峰 陈桂鹏

李丹,崔文峰,陈桂鹏. 基于差分进化算法的SIMO Buck变换器最优动态响应搜索[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(5):1457-1468 doi: 10.13700/j.bh.1001-5965.2023.0356
引用本文: 李丹,崔文峰,陈桂鹏. 基于差分进化算法的SIMO Buck变换器最优动态响应搜索[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(5):1457-1468 doi: 10.13700/j.bh.1001-5965.2023.0356
LI D,CUI W F,CHEN G P. Optimal dynamic response exploration for SIMO Buck converter based on differential evolution algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1457-1468 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0356
Citation: LI D,CUI W F,CHEN G P. Optimal dynamic response exploration for SIMO Buck converter based on differential evolution algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1457-1468 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0356

基于差分进化算法的SIMO Buck变换器最优动态响应搜索

doi: 10.13700/j.bh.1001-5965.2023.0356
基金项目: 

广东省基础与应用基础研究基金(2022A1515011616);国家自然科学基金(51907172) 

详细信息
    通讯作者:

    E-mail:cgp2017@xmu.edu.cn

  • 中图分类号: TM461

Optimal dynamic response exploration for SIMO Buck converter based on differential evolution algorithm

Funds: 

Guangdong Basic and Applied Basic Research Foundation (2022A1515011616); National Natural Science Foundation of China (51907172) 

More Information
  • 摘要:

    随着单电感多输出(SIMO)直流变换器的广泛应用,其动态响应问题备受关注。为探究SIMO Buck变换器最优动态响应的理论极限,根据变换器工作原理建立数学模型,利用改进的差分进化(DE)算法进行搜索求解。所提方法可以搜索求解出不同目标下的变换器最优动态响应要求,如最优的自调节或交叉调节,还可以获得不同约束下的最优动态响应,如不同的动态响应时间、峰值电感电流。基于启发式DE算法的最优动态响应理论极限搜索,有助于全面了解SIMO直流变换器的动态性能,并指导控制器设计以优化动态响应过程。

     

  • 图 1  SIMO Buck变换器和工作波形

    Figure 1.  SIMO Buck converter and operation waveform

    图 2  SIMO Buck变换器的工作模态

    Figure 2.  Operation mode of SIMO Buck converter

    图 3  负载R1变化时使用PI控制和多变量控制的占空比d1dn和输出电压v1vn示意图

    Figure 3.  Duty cycles d1dn and output voltages v1vn using PI control and multivariable control when load R1 varies

    图 4  改进DE算法进化流程

    Figure 4.  Evolution process of improved DE algorithm

    图 5  2种切载情况下,动态响应时间为7个周期的最优动态响应时电感电流和输出电压波形

    Figure 5.  Inductor current and output voltage when the optimal dynamic response is achieved with 7 periods under two load variations

    图 6  2种切载情况下,最优自调节时的电感电流和电压波形

    Figure 6.  Inductor current and output voltage when the optimal self-regulation is achieved under two load variations

    图 7  2种切载情况下,最优交叉调节时的电感电流和电压波形

    Figure 7.  Inductor current and output voltage when the optimal cross-regulation is achieved under two load variations

    图 8  2种切载情况下,动态响应时间为6个周期的最优动态响应时电感电流和输出电压波形

    Figure 8.  Inductor current and output voltage when the optimal dynamic response is achieved with 6 periods under two load variations

    图 9  2种切载情况下,不同动态响应时间的最优动态响应时电压波动变化曲线

    Figure 9.  Voltage fluctuation curves when the optimal dynamic response is achieved with different time under two load variations

    图 10  不同峰值电感电流约束的最优动态响应下电压波动变化曲线

    Figure 10.  Voltage fluctuation curves when the optimal dynamic response is achieved with different limited maximum inductor current

    图 11  峰值电感电流约束为11.3000 A和11.8000 A时最优动态响应的电感电流和电压波形

    Figure 11.  Inductor current and output voltage when the optimal dynamic response is achieved with maximum inductor current limited to 11.30000 A and 11.80000 A

    表  1  变换器电路参数

    Table  1.   Circuit parameters of converter

    参数 数值
    输入电压Vin/V 25
    额定输出电压V1_ref/V 5
    额定输出电压V2_ref/V 10
    额定输出电压V3_ref/V 15
    电感L/μH 500
    电容C1C2C3/μF 1500
    输出负载电阻R1 1
    输出负载电阻R2R3 5
    下载: 导出CSV

    表  2  动态响应时间为7个周期时实现最优动态响应的占空比

    Table  2.   Duty cycles to achieve the optimal dynamic response when dynamic response time is 7 periods

    切载 开关管 占空比
    T 2T 3T 4T 5T 6T 7T
    4 Ω → 1 ΩS01.0000.9970.9240.5050.4900.0600.001
    S10.8270.4380.5090.4480.4350.4440.496
    S20.1730.2310.1790.2540.0910.2640.218
    1 Ω → 4 ΩS00.0000.0000.0000.0000.1400.5350.992
    S10.1350.2510.2650.1910.0200.2370.406
    S20.1880.3480.2690.2480.5040.4010.240
    下载: 导出CSV
  • [1] HUANG M H, CHEN K H. Single-inductor multi-output (SIMO) DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices[J]. IEEE Journal of Solid-State Circuits, 2009, 44(4): 1099-1111. doi: 10.1109/JSSC.2009.2014726
    [2] XU W W, LI Y, GONG X H, et al. A single-inductor dual-output switching converter with low ripples and improved cross regulation[C]//Proceedings of the IEEE Custom Integrated Circuits Conference. Piscataway: IEEE Press, 2009: 303-306.
    [3] JING X C, MOK P K T, LEE M C. A wide-load-range single-inductor-dual-output boost regulator with minimized cross-regulation by constant-charge-auto-hopping (CCAH) control[C]//Proceedings of the IEEE Custom Integrated Circuits Conference. Piscataway: IEEE Press, 2009: 299-302.
    [4] MA D S, KI W H, TSUI C Y, et al. Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode[J]. IEEE Journal of Solid-State Circuits, 2003, 38(1): 89-100. doi: 10.1109/JSSC.2002.806279
    [5] MA D S, KI W H, TSUI C Y. A pseudo-CCM/DCM SIMO switching converter with freewheel switching[J]. IEEE Journal of Solid-State Circuits, 2003, 38(6): 1007-1014. doi: 10.1109/JSSC.2003.811976
    [6] MA D S, KI W H. Fast-transient PCCM switching converter with freewheel switching control[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2007, 54(9): 825-829. doi: 10.1109/TCSII.2007.900903
    [7] TREVISAN D, MATTAVELLI P, TENTI P. Digital control of single-inductor multiple-output step-down DC-DC converters in CCM[J]. IEEE Transactions on Industrial Electronics, 2008, 55(9): 3476-3483. doi: 10.1109/TIE.2008.921234
    [8] WANG W, XU J P, WEI X J, et al. Peak inductor current and differential-mode voltage control of single-inductor dual-output buck converters in continuous conduction mode[C]//Proceedings of the IEEE 6th International Power Electronics and Motion Control Conference. Piscataway: IEEE Press, 2009: 495-499.
    [9] WANG Y, XU J P, YIN G. Cross-regulation suppression and stability analysis of capacitor current ripple controlled SIDO CCM Buck converter[J]. IEEE Transactions on Industrial Electronics, 2019, 66(3): 1770-1780. doi: 10.1109/TIE.2018.2838103
    [10] 王瑶. 电容电流-电容电压纹波控制单电感双输出CCM Buck变换器[J]. 中国电机工程学报, 2020, 40(10): 3280-3288.

    WANG Y. Capacitor current and capacitor voltage ripple controlled single-inductor dual-output CCM Buck converter[J]. Proceedings of the CSEE, 2020, 40(10): 3280-3288(in Chinese).
    [11] WANG Y, XU J P, ZHOU G H. A cross regulation analysis for single-inductor dual-output CCM Buck converters[J]. Journal of Power Electronics, 2016, 16(5): 1802-1812. doi: 10.6113/JPE.2016.16.5.1802
    [12] PATRA P, GHOSH J, PATRA A. Control scheme for reduced cross-regulation in single-inductor multiple-output DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11): 5095-5104. doi: 10.1109/TIE.2012.2227895
    [13] DASIKA J D, BAHRANI B, SAEEDIFARD M, et al. Multivariable control of single-inductor dual-output Buck converters[J]. IEEE Transactions on Power Electronics, 2014, 29(4): 2061-2070. doi: 10.1109/TPEL.2013.2266616
    [14] LE H P, CHAE C S, LEE K C, et al. A single-inductor switching DC-DC converter with five outputs and ordered power-distributive control[J]. IEEE Journal of Solid-State Circuits, 2007, 42(12): 2706-2714. doi: 10.1109/JSSC.2007.908767
    [15] WOO Y J, LE H P, CHO G H, et al. Load-independent control of switching DC-DC converters with freewheeling current feedback[J]. IEEE Journal of Solid-State Circuits, 2008, 43(12): 2798-2808. doi: 10.1109/JSSC.2008.2005709
    [16] 贺素霞, 张具琴. 基于模型预测控制单电感双输出Buck变换器的仿真分析[J]. 可再生能源, 2022, 40(4): 558-563.

    HE S X, ZHANG J Q. Simulation analysis of single inductor dual output Buck converter based on model predictive control[J]. Renewable Energy Resources, 2022, 40(4): 558-563(in Chinese).
    [17] WANG B F, TAN K T, SO P L. Low cross regulation SIMO DC/DC converter with model predictive voltage control[C]//Proceedings of the IEEE Power & Energy Society General Meeting. Piscataway: IEEE Press, 2013: 1-5.
    [18] WANG B F, KANAMARLAPUDI V R K, XIAN L, et al. Model predictive voltage control for single-inductor multiple-output DC-DC converter with reduced cross regulation[J]. IEEE Transactions on Industrial Electronics, 2016, 63(7): 4187-4197. doi: 10.1109/TIE.2016.2532846
    [19] ZHANG X N, WANG B F, TAN X J, et al. Deadbeat control for single-inductor multiple-output DC-DC converter with effectively reduced cross regulation[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(4): 3372-3381. doi: 10.1109/JESTPE.2019.2950247
    [20] TIAN M N, GAO X B, DAI C. Differential evolution with improved individual-based parameter setting and selection strategy[J]. Applied Soft Computing, 2017, 56: 286-297. doi: 10.1016/j.asoc.2017.03.010
    [21] WANG S H, LI Y Z, YANG H Y, et al. Self-adaptive differential evolution algorithm with improved mutation strategy[J]. Soft Computing, 2018, 22(10): 3433-3447. doi: 10.1007/s00500-017-2588-5
    [22] HOU Y, ZHAO L, LU H W. Fuzzy neural network optimization and network traffic forecasting based on improved differential evolution[J]. Future Generation Computer Systems, 2018, 81: 425-432. doi: 10.1016/j.future.2017.08.041
    [23] 李笠, 李广鹏, 常亮, 等. 约束进化算法及其应用研究综述[J]. 计算机科学, 2021, 48(4): 1-13.

    LI L, LI G P, CHANG L, et al. Survey of constrained evolutionary algorithms and their applications[J]. Computer Science, 2021, 48(4): 1-13(in Chinese).
    [24] NOMAN N, IBA H. constrained differential evolution for economic dispatch with valve-point effect[J]. International Journal of Bio-Inspired Computation, 2011, 3(6): 346. doi: 10.1504/IJBIC.2011.043607
    [25] TAKAHAMA T, SAKAI S. Fast and stable constrained optimization by the ε constrained differential evolution[J]. Pacific Journal of Optimizatin, 2009, 5(2): 261-282.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  72
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-14
  • 录用日期:  2023-09-27
  • 网络出版日期:  2024-01-12
  • 整期出版日期:  2025-05-31

目录

    /

    返回文章
    返回
    常见问答