留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于强化学习的单电感多端口变换器调制策略设计方法

白敬波 陈宇 谢诗语 代新维

白敬波,陈宇,谢诗语,等. 基于强化学习的单电感多端口变换器调制策略设计方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(5):1480-1489 doi: 10.13700/j.bh.1001-5965.2023.0302
引用本文: 白敬波,陈宇,谢诗语,等. 基于强化学习的单电感多端口变换器调制策略设计方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(5):1480-1489 doi: 10.13700/j.bh.1001-5965.2023.0302
BAI J B,CHEN Y,XIE S Y,et al. Design method for modulation strategy of a single-inductor multi-port converter based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1480-1489 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0302
Citation: BAI J B,CHEN Y,XIE S Y,et al. Design method for modulation strategy of a single-inductor multi-port converter based on reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1480-1489 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0302

基于强化学习的单电感多端口变换器调制策略设计方法

doi: 10.13700/j.bh.1001-5965.2023.0302
基金项目: 

湖北省青年拔尖人才项目 

详细信息
    通讯作者:

    E-mail:ayu03@163.com

  • 中图分类号: TM131.3

Design method for modulation strategy of a single-inductor multi-port converter based on reinforcement learning

Funds: 

The Young Top-notch Talent Cultivation Program of Hubei Province 

More Information
  • 摘要:

    单电感多端口(SIMP)变换器具有多硅少磁的特性,在诸多领域有很好的应用潜力,但其开关模态多,调制策略设计复杂,目前的设计方法是人为挑选开关模态序列并进行模态分析,设计过程需要电力电子专业知识和经验。基于此,提出一种基于强化学习(RL)的单电感多端口变换器调制策略设计方法,使用神经网络(NN)生成调制策略,该方法将端口电压和变换器结构等已知条件作为神经网络输入,并采用一组简单的规则提供奖励用于训练神经网络,避免繁复的人工设计。通过强化学习,神经网络无需人为干预即可在试错中总结经验,生成不同运行工况下的最优调制策略。对一种单电感多端口变换器进行调制策略设计,并通过实验验证了所提方法的有效性。

     

  • 图 1  实际拓扑及其9种开关模态

    Figure 1.  Actual topology and nine switching modes

    图 2  强化学习架构

    Figure 2.  Reinforcement learning framework

    图 3  状态矩阵

    Figure 3.  State matrix

    图 4  智能体选择开关模态及占空比的过程

    Figure 4.  Process of selecting switch mode and duty cycle by agent

    图 5  调制策略设计系统流程

    Figure 5.  Flowchart of modulation strategy design system

    图 6  SIMP变换器控制逻辑

    Figure 6.  SIMP converter control logic

    图 7  不同工况下最优调制策略

    Figure 7.  The optimal modulation strategy under different working conditions

    图 8  不同工况下 2 种人为设计的调制策略

    Figure 8.  Two artificially designed modulation strategy under different working conditions

    图 9  开关管驱动信号及电感电流的仿真和实验波形

    Figure 9.  Simulation waveform and experimental waveform of switching drive signal and inductance current

    表  1  样机关键参数

    Table  1.   Key parameters of prototype

    元件 数值
    光伏输入电压Vi/V 20~40(通常30)
    电池电压Vb/V 30~40(通常36)
    输出电压Vo/V 24
    输出功率Po/W 0~120
    光伏功率Pi/W 0~240
    开关频率fs/kHz 20
    电感L/μH 140
    MOSFETs (S1S3) GS61004B
    二极管(D1D2) NTSJ30U80
    数字信号处理器(DSP) TMS320F28335
    下载: 导出CSV

    表  2  不同开关模态下电感两端电压

    Table  2.   Voltage at both ends of inductor under different switching modes

    开关模态 S1 S2 S3 电感两端电压
    m1 1 0 0 v1=Vi
    m2 0 0 1 v2=−Vo
    m3 0 1 1 v3=VbVo
    m4 0 0 0 v4=−Vb
    m5 0 1 0 v5=0
     注:“0”表示开关管关断,“1”表示开关管导通。
    下载: 导出CSV

    表  3  调制策略设计系统参数

    Table  3.   Parameters of modulation strategy design system

    参数 数值
    X 1×35
    神经网络输入层节点数 35
    神经网络隐藏层节点数 132
    隐藏层激活函数 ReLU
    神经网络输出层节点数 95
    训练算法 Gradient Descent
    α 0.001
    γ 0.9
    Nmax 8
    RSN –10
    RN –300
    RSP 20
    RP 600
    下载: 导出CSV
  • [1] KHASIM S R, DHANAMJAYULU C, MUYEEN S M. A single inductor multi-port power converter for electric vehicle applications[J]. IEEE Access, 2023, 11: 3367-3385. doi: 10.1109/ACCESS.2023.3234105
    [2] HUANG T W, TSENG W J, HUANG J X. Single-inductor multiple-outputs dimmable LED driver with Buck converter[C]//Proceedings of the International Power Electronics Conference. Piscataway: IEEE Press, 2018: 1626-1633.
    [3] CHANG C K, SU C H, CHAO P C. A new single inductor bipolar multiple output (SIBMO) on-chip boost converter using ripple-based constant on-time control for LCD drivers[C]//Proceedings of the 40th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2014: 4122-4125.
    [4] KIM J Y, LEE B S, LEE S H, et al. Integrated single inductor converter for a DC grid system connected with battery and load[J]. IEEE Transactions on Industrial Electronics, 2021, 68(12): 12010-12020. doi: 10.1109/TIE.2020.3047062
    [5] 周述晗, 周国华, 毛桂华, 等. 电流型控制单电感双输出开关变换器稳定性与瞬态特性分析[J]. 电工技术学报, 2018, 33(6): 1374-1381.

    ZHOU S H, ZHOU G H, MAO G H, et al. Stability and transient response analysis of current-mode controlled single-inductor dual-output converter[J]. Transactions of China Electrotechnical Society, 2018, 33(6): 1374-1381(in Chinese).
    [6] 徐利梅, 王瑶, 张留洋, 等. 用于单电感双输出Buck变换器的PCPV控制方案[J]. 西南交通大学学报, 2021, 56(1): 182-189.

    XU L M, WANG Y, ZHANG L Y, et al. Peak-current and peak-voltage control scheme for single-inductor dual-output Buck converter[J]. Journal of Southwest Jiaotong University, 2021, 56(1): 182-189(in Chinese).
    [7] WU J R, LU Y M. Exact feedback linearisation optimal control for single-inductor dual-output Boost converter[J]. IET Power Electronics, 2020, 13(11): 2293-2301. doi: 10.1049/iet-pel.2019.1160
    [8] XU W W, LI Y, GONG X H, et al. A dual-mode single-inductor dual-output switching converter with small ripple[J]. IEEE Transactions on Power Electronics, 2010, 25(3): 614-623. doi: 10.1109/TPEL.2009.2033927
    [9] CHEN G P, LIU Y W, QING X L, et al. Principle and topology derivation of single-inductor multi-input multi-output DC-DC converters[J]. IEEE Transactions on Industrial Electronics, 2021, 68(1): 25-36. doi: 10.1109/TIE.2020.2965490
    [10] YIN C D, LI H, LI Y M, et al. A new family of non-isolated single-inductor three-port converter based on a storage port switch-commutated unit[C]//Proceedings of the International Power Electronics Conference. Piscataway: IEEE Press, 2022: 2307-2311.
    [11] QIAN Z J, ABDEL-RAHMAN O, AL-ATRASH H, et al. Modeling and control of three-port DC/DC converter interface for satellite applications[J]. IEEE Transactions on Power Electronics, 2010, 25(3): 637-649. doi: 10.1109/TPEL.2009.2033926
    [12] BÖHLER J, KRISMER F, SEN T, et al. Optimized modulation of a four-port isolated DC-DC converter formed by integration of three dual active bridge converter stages[C]//Proceedings of the IEEE International Telecommunications Energy Conference. Piscataway: IEEE Press, 2018: 1-8.
    [13] QIAN Z J, ABDEL-RAHMAN O, HU H B, et al. A zero-voltage switching four-port integrated DC/DC converter[C]//Proceedings of the IEEE International Telecommunications Energy Conference. Piscataway: IEEE Press, 2010: 1-8.
    [14] MA Y H, HUANGFU Y G, XU L C, et al. A novel nonisolated multi-port bidirectional DC-DC converter with high voltage gain for fuel cell hybrid system[C]//Proceedings of the IEEE Transportation Electrification Conference & Expo. Piscataway: IEEE Press, 2021: 376-381.
    [15] 王瑶. 电容电流–电容电压纹波控制单电感双输出CCM Buck变换器[J]. 中国电机工程学报, 2020, 40(10): 3280-3288.

    WANG Y. Capacitor current and capacitor voltage ripple controlled single-inductor dual-output CCM Buck converter[J]. Proceedings of the CSEE, 2020, 40(10): 3280-3288(in Chinese).
    [16] 谢锋, 皇金锋. 单电感双输出Buck变换器的供能模式及输出纹波电压分析[J]. 电工技术学报, 2020, 35(12): 2585-2595.

    XIE F, HUANG J F. Supply modes and output ripple voltage of single-inductor dual-output Buck converter[J]. Transactions of China Electrotechnical Society, 2020, 35(12): 2585-2595(in Chinese).
    [17] ZHAO S, BLAABJERG F, WANG H. An overview of artificial intelligence applications for power electronics[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4633-4658. doi: 10.1109/TPEL.2020.3024914
    [18] WANG S D, DRAGICEVIC T, GONTIJO G F, et al. Machine learning emulation of model predictive control for modular multilevel converters[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11628-11634. doi: 10.1109/TIE.2020.3038064
    [19] SONG J C, DONG F, ZHAO J W, et al. An efficient multiobjective design optimization method for a PMSLM based on an extreme learning machine[J]. IEEE Transactions on Industrial Electronics, 2019, 66(2): 1001-1011. doi: 10.1109/TIE.2018.2835413
    [20] CHEN Y, BAI J B, KANG Y. A nonisolated single-inductor multiport DC-DC topology deduction method based on reinforcement learning[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10(6): 6572-6585. doi: 10.1109/JESTPE.2021.3128270
    [21] GU Z M, ZHANG L, JIN H, et al. Deep reinforcement learning-based ground-via placement optimization for EMI mitigation[J]. IEEE Transactions on Electromagnetic Compatibility, 2023, 65(2): 564-573. doi: 10.1109/TEMC.2022.3222034
    [22] SUTTON R S. Learning to predict by the methods of temporal differences[J]. Machine Learning, 1988, 3(1): 9-44.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  77
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 录用日期:  2023-11-01
  • 网络出版日期:  2023-11-23
  • 整期出版日期:  2025-05-31

目录

    /

    返回文章
    返回
    常见问答