留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临近空间飞行器用锂离子电池低温电解液综述

苏方远 宋歌 王振兵 陈成猛

苏方远,宋歌,王振兵,等. 临近空间飞行器用锂离子电池低温电解液综述[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2716-2726 doi: 10.13700/j.bh.1001-5965.2023.0052
引用本文: 苏方远,宋歌,王振兵,等. 临近空间飞行器用锂离子电池低温电解液综述[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2716-2726 doi: 10.13700/j.bh.1001-5965.2023.0052
SU F Y,SONG G,WANG Z B,et al. Review of low-temperature electrolyte of lithium-ion batteries for near space vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2716-2726 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0052
Citation: SU F Y,SONG G,WANG Z B,et al. Review of low-temperature electrolyte of lithium-ion batteries for near space vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2716-2726 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0052

临近空间飞行器用锂离子电池低温电解液综述

doi: 10.13700/j.bh.1001-5965.2023.0052
基金项目: 

国家自然科学基金(22179139);国家重点研发计划(2022YFF0609801);山西省重点研发计划项目(2021020660301013)

详细信息
    通讯作者:

    E-mail:ccm@sxicc.ac.cn

  • 中图分类号: V221+.3;TB553

Review of low-temperature electrolyte of lithium-ion batteries for near space vehicle

Funds: 

National Natural Science Foundation of China (22179139); National Key Research and Development Program of China (2022YFF0609801); Key Research and Development Projects of Shanxi Province (2021020660301013)

More Information
  • 摘要:

    临近空间的低温环境对临近飞行器的电源系统提出了更高的要求。空间用锂离子电池(LIBs)作为空间电源系统的主要组成部分,在极端环境中的正常运行仍然面临着极高的技术壁垒。电解液,包括电解液本体相及固态电解质界面(SEI)膜,对锂离子电池在低温下的稳定运行十分关键。因此,开发先进的低温电解液对于锂离子电池在极端寒冷环境中稳定运行极其重要。从锂离子电池电解液角度出发,针对限制锂离子电池低温性能差的原因,综述了改善锂离子电池低温电解液的相关策略,对面向临近空间飞行器的锂离子电池低温电解液设计现状进行了分析。

     

  • 图 1  锂离子电池在低温下工作示意图及挑战[12]

    Figure 1.  Schematic and challenges for LIBs operated at low-temperatures[12]

    图 2  不同电解液在−20 ℃时的放电容量 [17]

    Figure 2.  Discharge capacity of different electrolytes at −20 ℃[17]

    图 3  不同溶剂混合物的典型二相图[18-19]

    Figure 3.  Typical binary phase diagram of mixtures of different solvent[18-19]

    图 4  −40 ℃时不同溶剂比的二元、三元和四元碳酸酯电解液在中间相炭微球/LiNi0.8Co0.2O2电池中的放电电压曲线[20]

    Figure 4.  Discharge voltage profles of mesocarbon microbeads/LiNi0.8Co0.2O2 cells consisting of various binary, ternary, and quaternary carbonate electrolytes with different solvent ratios at −40 ℃[20]

    图 5  采用添加剂的电解液离子电导率的温度依赖性[23]

    Figure 5.  Temperature dependence of ionic conductivities of electrolyte solutions adopting the additives[23]

    图 6  石墨/LiNi0.5Co0.2Mn0.3O2软包电池在不同电解液中的电化学性能 [29]

    Figure 6.  Electrochemical performance of graphite/LiNi0.5Co0.2Mn0.3O2 pouch cells in different electrolytes[29]

    图 7  LiDFBOP形成SEI膜机理

    Figure 7.  Mechanism of SEI derived by LiDFBOP

    图 8  Li+从电解液到石墨负极的扩散过程示意图

    Figure 8.  Schematically illustration of Li+ diffusion process from electrolyte to electrode

    图 9  不同Li+-溶剂配合物的结合能及去溶剂化能[41]

    Figure 9.  Binding and desolvation energies of different Li+-solvent complexes [41]

    图 10  不同电解液结构示意图

    Figure 10.  Illustrations of the solution structures different electrolytes

    图 11  石墨负极的TEM图像及不同电解液的石墨/锂电池在第5圈的容量-电压曲线[45]

    Figure 11.  TEM image of a graphite anode and capacity-voltage curves of the fifth cycle of graphite/Li cells with different electrolytes[45]

    图 12  LiPF6基局部高浓度电解液改善锂离子电池低温性能机理

    Figure 12.  Mechanism of LIPF6-based local high concentration electrolyte improving low-temperature performance of Li-ion batteries

  • [1] 张海林, 周林, 马骁, 等. 临近空间飞行器发展现状及军事应用研究[J]. 飞航导弹, 2014(7): 3-7.

    ZHANG H L, ZHOU L, MA X, et al. Research on development status and military application of near space vehicles[J]. Aerodynamic Missile Journal, 2014(7): 3-7(in Chinese).
    [2] 黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62.

    HUANG W N, ZHANG X J, LI Z B, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019, 37(21): 46-62(in Chinese).
    [3] TU Y G, WU J, XU G N, et al. Perovskite solar cells for space applications: progress and challenges[J]. Advanced Materials, 2021, 33(21): 2006545. doi: 10.1002/adma.202006545
    [4] 谢赞, 周灿灿, 赵振涛, 等. 宽速域飞行器发展及研究现状综述[J]. 空天技术, 2022(4): 28-39.

    XIE Z, ZHOU C C, ZHAO Z T, et al. Overview of development and research status of wide speed range aircraft[J]. Aerospace Technology, 2022(4): 28-39(in Chinese).
    [5] ZHU G L, WEN K C, LV W Q, et al. Materials insights into low-temperature performances of lithium-ion batteries[J]. Journal of Power Sources, 2015, 300: 29-40. doi: 10.1016/j.jpowsour.2015.09.056
    [6] CAI W L, YAO Y X, ZHU G L, et al. A review on energy chemistry of fast-charging anodes[J]. Chemical Society Reviews, 2020, 49(12): 3806-3833. doi: 10.1039/C9CS00728H
    [7] HOU J B, YANG M, WANG D Y, et al. Fundamentals and challenges of lithium ion batteries at temperatures between −40 and 60 ℃[J]. Advanced Energy Materials, 2020, 10(18): 1904152. doi: 10.1002/aenm.201904152
    [8] ZHANG N, DENG T, ZHANG S Q, et al. Critical review on low-temperature Li-ion/metal batteries[J]. Advanced Materials, 2022, 34(15): 2107899. doi: 10.1002/adma.202107899
    [9] SMART M C, RATNAKUMAR B V, EWELL R C, et al. The use of lithium-ion batteries for JPL’s Mars missions[J]. Electrochimica Acta, 2018, 268: 27-40. doi: 10.1016/j.electacta.2018.02.020
    [10] WINTER M, BARNETT B, XU K. Before Li ion batteries[J]. Chemical Reviews, 2018, 118(23): 11433-11456. doi: 10.1021/acs.chemrev.8b00422
    [11] XIE J, LU Y C. A retrospective on lithium-ion batteries[J]. Nature Communications, 2020, 11(1): 2499. doi: 10.1038/s41467-020-16259-9
    [12] LI Q, LIU G, CHENG H R, et al. Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges[J]. Chemistry-a European Journal, 2021, 27(64): 15842-15865. doi: 10.1002/chem.202101407
    [13] LIU D D, WEI Z Y, LIU L M, et al. Ultrafine SnO2 anchored in ordered mesoporous carbon framework for lithium storage with high capacity and rate capability[J]. Chemical Engineering Journal, 2021, 406: 126710. doi: 10.1016/j.cej.2020.126710
    [14] LI Q Y, JIAO S H, LUO L L, et al. Wide-temperature electrolytes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 18826-18835.
    [15] SMART M C, LUCHT B L, DALAVI S, et al. The effect of additives upon the performance of MCMB/LiNixCo1–xO2Li-ion cells containing methyl butyrate-based wide operating temperature range electrolytes[J]. Journal of the Electrochemical Society, 2012, 159(6): A739-A751. doi: 10.1149/2.058206jes
    [16] YANG B W, ZHANG H, YU L, et al. Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells[J]. Electrochimica Acta, 2016, 221: 107-114. doi: 10.1016/j.electacta.2016.10.037
    [17] KAFLE J, HARRIS J, CHANG J, et al. Development of wide temperature electrolyte for graphite/LiNiMnCoO2 Li-ion cells: high throughput screening[J]. Journal of Power Sources, 2018, 392: 60-68. doi: 10.1016/j.jpowsour.2018.04.102
    [18] DING M S, XU K, ZHANG S S, et al. Liquid/solid phase diagrams of binary carbonates for lithium Batteries Part II[J]. Journal of the Electrochemical Society, 2001, 148(4): A299. doi: 10.1149/1.1353568
    [19] DING M S, XU K, JOW T R. Liquid-solid phase diagrams of binary carbonates for lithium batteries[J]. Journal of the Electrochemical Society, 2000, 147(5): 1688. doi: 10.1149/1.1393419
    [20] SMART M C, RATNAKUMAR B V, WHITCANACK L D, et al. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes[J]. Journal of Power Sources, 2003, 119: 349-358.
    [21] DONG X L, GUO Z W, GUO Z Y, et al. Organic batteries operated at −70 ℃[J]. Joule, 2018, 2(5): 902-913. doi: 10.1016/j.joule.2018.01.017
    [22] ZHENG H, XIANG H F, JIANG F Y, et al. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries[J]. Advanced Energy Materials, 2020, 10(30): 2001440. doi: 10.1002/aenm.202001440
    [23] KIM K M, LY N V, WON J H, et al. Improvement of lithium-ion battery performance at low temperature by adopting polydimethylsiloxane-based electrolyte additives[J]. Electrochimica Acta, 2014, 136: 182-188. doi: 10.1016/j.electacta.2014.05.054
    [24] ZHAO D N, WANG J, WANG P, et al. Regulating the composition distribution of layered SEI film on Li-ion battery anode by LiDFBOP[J]. Electrochimica Acta, 2020, 337: 135745. doi: 10.1016/j.electacta.2020.135745
    [25] SHI J L, EHTESHAMI N, MA J L, et al. Improving the graphite/electrolyte interface in lithium-ion battery for fast charging and low temperature operation: fluorosulfonyl isocyanate as electrolyte additive[J]. Journal of Power Sources, 2019, 429: 67-74. doi: 10.1016/j.jpowsour.2019.04.113
    [26] LEI Q F, YANG T X, ZHAO X Y, et al. Lithium difluorophosphate as a multi-functional electrolyte additive for 4.4 V LiNi0.5Co0.2Mn0.3O2/graphite lithium ion batteries[J]. Journal of Electroanalytical Chemistry, 2019, 846: 113141. doi: 10.1016/j.jelechem.2019.05.023
    [27] ZHANG S S, XU K, JOW T R. EIS study on the formation of solid electrolyte interface in Li-ion battery[J]. Electrochimica Acta, 2006, 51(8-9): 1636-1640. doi: 10.1016/j.electacta.2005.02.137
    [28] ZHANG S S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394. doi: 10.1016/j.jpowsour.2006.07.074
    [29] GUO R D, CHE Y X, LAN G Y, et al. Tailoring low-temperature performance of a lithium-ion battery via rational designing interphase on an anode[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38285-38293.
    [30] SONG G, YI Z L, SU F Y, et al. New insights into the mechanism of LiDFBOP for improving the low-temperature performance via the rational design of an interphase on a graphite anode[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40042-40052.
    [31] WU B R, REN Y H, MU D B, et al. Lithium insertion/desertion properties of LiFePO4 cathode in a low temperature electrolyte modified with sodium chloride additive[J]. Solid State Ionics, 2014, 260: 8-14. doi: 10.1016/j.ssi.2014.03.006
    [32] ZHAO D N, SONG S N, YE X S, et al. New insight into the mechanism of LiPO2F2 on the interface of high-voltage cathode LiNi0.5Mn1.5O4 with truncated octahedral structure[J]. Applied Surface Science, 2019, 491: 595-606. doi: 10.1016/j.apsusc.2019.06.146
    [33] LIU Q Q, MA L, DU C Y, et al. Effects of the LiPO2F2 additive on unwanted lithium plating in lithium-ion cells[J]. Electrochimica Acta, 2018, 263: 237-248. doi: 10.1016/j.electacta.2018.01.058
    [34] PHAM H Q, CHUNG G J, HAN J, et al. Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite‖LiCoO2 pouch cell under–20C[J]. The Journal of Chemical Physics, 2020, 152(9): 094709. doi: 10.1063/1.5144280
    [35] ZHANG X H, ZOU L F, XU Y B, et al. Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range[J]. Advanced Energy Materials, 2020, 10(22): 2000368. doi: 10.1002/aenm.202000368
    [36] CHA J, HAN J G, HWANG J, et al. Mechanisms for electrochemical performance enhancement by the salt-type electrolyte additive, lithium difluoro(oxalato)borate, in high-voltage lithium-ion batteries[J]. Journal of Power Sources, 2017, 357: 97-106. doi: 10.1016/j.jpowsour.2017.04.094
    [37] ZHANG Q L, PAN J, LU P, et al. Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries[J]. Nano Letters, 2016, 16(3): 2011-2016. doi: 10.1021/acs.nanolett.5b05283
    [38] GAO Y, ROJAS T, WANG K, et al. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface[J]. Nature Energy, 2020, 5: 534-542. doi: 10.1038/s41560-020-0640-7
    [39] ZHENG X Z, FANG G H, PAN Y, et al. Synergistic effect of fluoroethylene carbonate and lithium difluorophosphate on electrochemical performance of SiC-based lithium-ion battery[J]. Journal of Power Sources, 2019, 439: 227081. doi: 10.1016/j.jpowsour.2019.227081
    [40] YAO Y X, CHEN X, YAN C, et al. Regulating interfacial chemistry in lithium-ion batteries by a weakly solvating electrolyte[J]. Angewandte Chemie, 2021, 133(8): 4136-4143. doi: 10.1002/ange.202011482
    [41] MA T, NI Y X, WANG Q R, et al. Optimize lithium deposition at low temperature by weakly solvating power solvent[J]. Angewandte Chemie, 2022, 134(39): e202207927. doi: 10.1002/ange.202207927
    [42] YANG Y, FANG Z, YIN Y, et al. Synergy of weakly-solvated electrolyte and optimized interphase enables graphite anode charge at low temperature[J]. Angewandte Chemie International Edition, 2022, 61(36): e202208345. doi: 10.1002/anie.202208345
    [43] XU J, WANG X, YUAN N Y, et al. Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance[J]. Journal of Power Sources, 2019, 430: 74-79. doi: 10.1016/j.jpowsour.2019.05.024
    [44] WANG Z X, SUN Z H, SHI Y, et al. Ion-dipole chemistry drives rapid evolution of Li ions solvation sheath in low-temperature Li batteries[J]. Advanced Energy Materials, 2021, 11(28): 2100935. doi: 10.1002/aenm.202100935
    [45] JIANG L L, YAN C, YAO Y X, et al. Inhibiting solvent co-intercalation in a graphite anode by a localized high-concentration electrolyte in fast-charging batteries[J]. Angewandte Chemie International Edition, 2021, 60(7): 3402-3406. doi: 10.1002/anie.202009738
    [46] LIN S S, HUA H M, LAI P B, et al. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range[J]. Advanced Energy Materials, 2021, 11(36): 2101775. doi: 10.1002/aenm.202101775
    [47] PENG Z, CAO X, GAO P Y, et al. High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive[J]. Advanced Functional Materials, 2020, 30(24): 2001285. doi: 10.1002/adfm.202001285
    [48] YAN C, JIANG L L, YAO Y X, et al. Nucleation and growth mechanism of anion-derived solid electrolyte interphase in rechargeable batteries[J]. Angewandte Chemie International Edition, 2021, 60(15): 8521-8525. doi: 10.1002/anie.202100494
    [49] CHAE S, KWAK W J, HAN K S, et al. Rational design of electrolytes for long-term cycling of Si anodes over a wide temperature range[J]. ACS Energy Letters, 2021, 6(2): 387-394. doi: 10.1021/acsenergylett.0c02214
    [50] DONG X L, LIN Y X, LI P L, et al. High-energy rechargeable metallic lithium battery at −70 ℃ enabled by a cosolvent electrolyte[J]. Angewandte Chemie International Edition, 2019, 58(17): 5623-5627. doi: 10.1002/anie.201900266
    [51] JIA H P, ZOU L F, GAO P Y, et al. High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes[J]. Advanced Energy Materials, 2019, 9(31): 1900784. doi: 10.1002/aenm.201900784
    [52] LIN S S, HUA H M, LI Z S, et al. Functional localized high-concentration ether-based electrolyte for stabilizing high-voltage lithium-metal battery[J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33710-33718.
    [53] SONG G, YI Z L, SU F Y, et al. Boosting the low-temperature performance for Li-ion batteries in LiPF6-based local high-concentration electrolyte[J]. ACS Energy Letters, 2023, 8(3): 1336-1343. doi: 10.1021/acsenergylett.2c02903
    [54] LI W, WAINWRIGHT D S, DAHN J R, et al. Rechargeable lithium batteries with aqueous electrolytes[J]. Science, 1994, 264(5162): 1115-1118. doi: 10.1126/science.264.5162.1115
    [55] XU J J, JI X, ZHANG J X, et al. Aqueous electrolyte design for super-stable 2.5 V LiMn2O4 Li4Ti5O12 pouch cells[J]. Nature Energy, 2022, 7(2): 186-193. doi: 10.1038/s41560-021-00977-5
    [56] NIAN Q S, TAO Z L. Aqueous batteries operated at ̶ 50 ℃[J]. Angewandte Chemie International Edition, 2019, 58(47): 16994-16999. doi: 10.1002/anie.201908913
    [57] YUE J M, ZHANG J K, TONG Y X, et al. Aqueous interphase formed by CO2 brings electrolytes back to salt-in-water regime[J]. Nature Chemistry, 2021, 13(11): 1061-1069. doi: 10.1038/s41557-021-00787-y
  • 加载中
图(12)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  54
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 录用日期:  2023-04-12
  • 网络出版日期:  2024-11-06
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答