留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浮空器电源电流均衡非谐振线性软开关直流升压变换拓扑

胡肖飞 李虹 曾洋斌 苏文哲 徐国宁

胡肖飞,李虹,曾洋斌,等. 浮空器电源电流均衡非谐振线性软开关直流升压变换拓扑[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2792-2800 doi: 10.13700/j.bh.1001-5965.2022.1023
引用本文: 胡肖飞,李虹,曾洋斌,等. 浮空器电源电流均衡非谐振线性软开关直流升压变换拓扑[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2792-2800 doi: 10.13700/j.bh.1001-5965.2022.1023
HU X F,LI H,ZENG Y B,et al. A non-resonant linear soft-switching DC-DC step-up conversion topology featuring current balancing for aerostat power systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2792-2800 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1023
Citation: HU X F,LI H,ZENG Y B,et al. A non-resonant linear soft-switching DC-DC step-up conversion topology featuring current balancing for aerostat power systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2792-2800 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.1023

浮空器电源电流均衡非谐振线性软开关直流升压变换拓扑

doi: 10.13700/j.bh.1001-5965.2022.1023
基金项目: 

国家自然科学基金优秀青年基金(51822701); 国家自然科学基金重点项目(52237008)

详细信息
    通讯作者:

    E-mail:hong_li@zju.edu.cn

  • 中图分类号: TM46

A non-resonant linear soft-switching DC-DC step-up conversion topology featuring current balancing for aerostat power systems

Funds: 

The Excellent Youth Scholars of National Natural Science Foundation of China (51822701); The Key Program of National Natural Science Foundation of China (52237008)

More Information
  • 摘要:

    临近空间浮空器在通信保障、地质勘探、科学实验等领域得到广泛应用,其电能变换设备因特殊的应用场景,要求具有高效、小型化和轻量化特征,又因浮空器电源中光伏电池的输出侧端口电压较低,直流母线电压较高,研制高效率、高功率密度和高电压增益的直流变换器对临近空间浮空器电源至关重要。在此技术背景下,基于可以实现高增益的箝位电容变换器和非谐振软开关技术,提出一种新型电流均衡非谐振线性(NRL)软开关直流升压变换拓扑。所提拓扑能够实现所有开关管的零电流(ZCS)开通和所有二极管的ZCS关断,同时能够消除因电容充放电导致的器件电流尖峰。通过仿真和硬件试验验证了所提拓扑的有效性和正确性,为临近空间浮空器电源中直流升压电能变换提供了一种新的拓扑选择。

     

  • 图 1  IB-CCS-Ⅱ 变换器构造方法[23]

    Figure 1.  Construction method of IB-CCS-Ⅱ converter[23]

    图 2  IB-CCS-Ⅱ 和扩展 IB-CCS-Ⅱ 变换器

    Figure 2.  IB-CCS-Ⅱ and extended IB-CCS-Ⅱ converters

    图 3  NRL软开关的一般性电路结构[27]

    Figure 3.  General circuit structures of the NRL soft-switching[27]

    图 4  构造过程、拓扑结构及参考方向

    Figure 4.  Constructive processes and topologies and reference directions

    图 5  NRL软开关在CCM下的理论波形

    Figure 5.  Theoretical waveforms of NRL soft-switching under the CCM condition

    图 6  6个工作模态的电流环路和流向

    Figure 6.  Current loop and flow direction of six operation modes

    图 7  所提变换器电压增益曲线

    Figure 7.  Voltage gain curve of the proposed converter

    图 8  IB-CCS-Ⅱ拓扑的关键仿真波形

    Figure 8.  Key simulation waveforms of IB-CCS-Ⅱ topology

    图 9  样机试验平台

    Figure 9.  Prototype experimental platform

    图 10  IB-CCS-Ⅱ拓扑的关键试验波形

    Figure 10.  Key experimental waveforms of IB-CCS-Ⅱ topology

    图 11  IB-CCS-Ⅱ拓扑的样机功率损耗分析

    Figure 11.  Prototype power loss analysis of IB-CCS-Ⅱ topology

    图 12  IB-CCS-Ⅱ拓扑的效率曲线

    Figure 12.  Efficiency curve of IB-CCS-Ⅱ topology

    表  1  电流均衡NRL软开关直流升压变换拓扑的电气参数

    Table  1.   Electric parameters of NRL soft-switching DC-DC step-up converter featuring current balancing

    参数 数值
    输入电压Vin/V 30
    输出电压Vo/V 400
    输出功率Po/W 400
    开关频率fs/kHz 200
    负载RL 400
    电容C1C2CoCe/μF 20
    辅助电感La1La2/μH 5
    电感L1L2/µH 500
    下载: 导出CSV

    表  2  不同软开关交错型直流升压变换器对比

    Table  2.   Comparison of different soft-switching interleaved boost-type converters

    软开关直流升压变换器 实现软开关的
    额外器件
    开关管S
    开通方式
    开关管S
    关断方式
    二极管D
    开通方式
    二极管D
    关断方式
    是否存在
    谐振电流尖峰
    传统的谐振软开关交错型直流升压变换器[28] Lr1, Lr2, Cr1, Cr2, ZCS 硬关断 ZVS ZVS
    具有辅助电感的软开关交错型直流升压变换器[29] Lr1, Lr2, Lr3, Lr4 ZVS 硬关断 硬开通 ZCS
    具有耦合电感的软开关交错型直流升压变换器[30] Lp1, Ls1, Lk1, Lp2, Ls2, Lk2 ZVS 硬关断 ZCS ZCS
    具有耦合电感的软开关交错型直流升压变换器[31] ZVS 硬关断 ZVS ZCS
    所提电流均衡NRL软开关IB-CCS-Ⅱ直流升压变换器 La1, La2 ZCS 硬关断 硬开通 ZCS
    下载: 导出CSV
  • [1] HIGASHIMATA A, ADACHI K, HASHIZUME T, et al. Design of a headway distance control system for ACC[J]. JSAE Review, 2001, 22(1): 15-22. doi: 10.1016/S0389-4304(00)00091-6
    [2] 杨秉, 杨健, 李小将, 等. 临近空间飞艇运行环境及其影响[J]. 航天器环境工程, 2008, 25(6): 555-557,498-499. doi: 10.3969/j.issn.1673-1379.2008.06.013

    YANG B, YANG J, LI X J, et al. The operating environment of near-space and its effects on the airship[J]. Spacecraft Environment Engineering, 2008, 25(6): 555-557,498-499(in Chinese). doi: 10.3969/j.issn.1673-1379.2008.06.013
    [3] BADDIPADIGA B P, STRATHMAN S, FERDOWSI M, et al. A high-voltage-gain DC-DC converter for powering a multi-mode monopropellant-electrospray propulsion system in satellites[C]//Proceedings of the IEEE Applied Power Electronics Conference and Exposition. Piscataway: IEEE Press, 2018: 1561-1565.
    [4] CHOU M C, LIAW C M. PMSM-driven satellite reaction wheel system with adjustable DC-link voltage[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(2): 1359-1373. doi: 10.1109/TAES.2014.110694
    [5] TONG Q, ZHANG D L. Research on a high output current DC/DC converter with wide input voltage range for space applications[C]//Proceedings of the International Conference on Integrated Circuits and Microsystems. Piscataway: IEEE Press, 2016: 205-209.
    [6] 焦宇晟, 郭形发, 杨帆. 小卫星用高可靠太阳电池阵功率调节技术[J]. 电力电子技术, 2020, 54(1): 79-81.

    JIAO Y S, GUO X F, YANG F. High reliable power conditioning technology of solar panel for small satellite[J]. Power Electronics, 2020, 54(1): 79-81(in Chinese).
    [7] ATHALYE P, MAKSIMOVIC D, ERICKSON R. High-performance front-end converter for avionics applications [aircraft power systems[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(2): 462-470. doi: 10.1109/TAES.2003.1207258
    [8] ZHU J J, QIAN Q S, LU S L, et al. A phase-shift triple full-bridge converter with three shared leading legs[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2018, 6(4): 1912-1920. doi: 10.1109/JESTPE.2017.2777964
    [9] 章治国, 刘俊良, 郭强, 等. 基于脉冲频率调制的高增益隔离型软开关直流变换器[J]. 电工技术学报, 2019, 34(2): 296-305.

    ZHANG Z G, LIU J L, GUO Q, et al. A high step-up isolated soft-switching DC-DC converter with pulse frequency modulation[J]. Transactions of China Electrotechnical Society, 2019, 34(2): 296-305(in Chinese).
    [10] HE P W, KHALIGH A. Comprehensive analyses and comparison of 1 kW isolated DC-DC converters for bidirectional EV charging systems[J]. IEEE Transactions on Transportation Electrification, 2017, 3(1): 147-156. doi: 10.1109/TTE.2016.2630927
    [11] REUSCH D, BISWAS S, ZHANG Y Z. System optimization of a high power density non-isolated intermediate bus converter for 48 V server applications[C]//Proceedings of the IEEE Applied Power Electronics Conference and Exposition. Piscataway: IEEE Press, 2018: 2191-2197.
    [12] PRUDENTE M, PFITSCHER L L, EMMENDOERFER G, et al. Voltage multiplier cells applied to non-isolated DC-DC converters[J]. IEEE Transactions on Power Electronics, 2008, 23(2): 871-887. doi: 10.1109/TPEL.2007.915762
    [13] 张兴. 高等电力电子技术[M]. 北京: 机械工业出版社, 2011: 24-27.

    ZHANG X. Advanced power electronics[M]. Beijing: China Machine Press, 2011: 24-27(in Chinese).
    [14] FU M F, FEI C, YANG Y C, et al. A GaN-based DC-DC module for railway applications: design consideration and high-frequency digital control[J]. IEEE Transactions on Industrial Electronics, 2020, 67(2): 1638-1647. doi: 10.1109/TIE.2019.2896279
    [15] FU M F, FEI C, YANG Y C, et al. Optimal design of planar magnetic components for a two-stage GaN-based DC-DC converter[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3329-3338. doi: 10.1109/TPEL.2018.2849741
    [16] RADZUAN R, MOHD SALLEH M K, HAMZAH M K, et al. Development of thin film capacitors for power system applications by PVD technique[C]//Proceedings of the IEEE Symposium on Humanities, Science and Engineering Research. Piscataway: IEEE Press, 2012: 1097-1100.
    [17] XIE H Y, LI R. A novel switched-capacitor converter with high voltage gain[J]. IEEE Access, 2019, 7: 107831-107844. doi: 10.1109/ACCESS.2019.2931562
    [18] SEEMAN M D, SANDERS S R. Analysis and optimization of switched-capacitor DC-DC converter[C]//Proceedings of the IEEE Workshops on Computers in Power Electronics. Piscataway: IEEE Press, 2006: 216-224.
    [19] HSIEH Y P, CHEN J F, LIANG T J, et al. Novel high step-up DC-DC converter with coupled-inductor and switched-capacitor techniques[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 998-1007. doi: 10.1109/TIE.2011.2151828
    [20] BEN-YAAKOV S. Behavioral average modeling and equivalent circuit simulation of switched capacitors converters[J]. IEEE Transactions on Power Electronics, 2012, 27(2): 632-636. doi: 10.1109/TPEL.2011.2171996
    [21] EVZELMAN M, BEN-YAAKOV S. Average-current-based conduction losses model of switched capacitor converters[J]. IEEE Transactions on Power Electronics, 2013, 28(7): 3341-3352. doi: 10.1109/TPEL.2012.2226060
    [22] ZENG Y B, LI H, WANG W C, et al. Cost-effective clamping capacitor boost converter with high voltage gain[J]. IET Power Electronics, 2021, 13(9): 1775-1786. doi: 10.1049/iet-pel.2019.1291
    [23] ZENG Y B, LI H, WANG W C, et al. High-efficient high-voltage-gain capacitor clamped DC-DC converters and their construction method[J]. IEEE Transactions on Industrial Electronics, 2021, 68(5): 3992-4003.
    [24] XIE W H, LI S X, SMEDLEY K M, et al. A family of dual resonant switched-capacitor converter with passive regenerative snubber[J]. IEEE Transactions on Power Electronics, 2020, 35(5): 4891-4904. doi: 10.1109/TPEL.2019.2945796
    [25] TRAN H N, CHOI S. A family of ZVT DC-DC converters with low-voltage ringing[J]. IEEE Transactions on Power Electronics, 2020, 35(1): 59-69. doi: 10.1109/TPEL.2019.2911040
    [26] LIN B R, CHEN J J. Analysis and implementation of a soft switching converter with high-voltage conversion ratio[J]. IET Power Electronics, 2008, 1(3): 386-394. doi: 10.1049/iet-pel:20070315
    [27] ZENG Y B, LI H, DU H T, et al. Non-resonant soft-switching technique with linear current on switching cycle time-scale for switched-capacitor DC-DC converters[J]. IET Power Electronics, 2022, 15(4): 287-305. doi: 10.1049/pel2.12230
    [28] LI H, DU H T, ZENG Y B, et al. A modified interleaved capacitor clamped DC-DC converter with non-resonant soft switching[J]. IEEE Transactions on Power Electronics, 2022, 37(10): 12221-12236. doi: 10.1109/TPEL.2022.3163010
    [29] LEI H D, HAO R X, YOU X J, et al. Nonisolated high step-up soft-switching DC-DC converter with interleaving and dickson switched-capacitor techniques[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(3): 2007-2021. doi: 10.1109/JESTPE.2019.2958316
    [30] MORADISIZKOOHI H, ELSAYAD N, MOHAMMED O A. Ultra-high step-up DC/DC converter based on dual-coupled-inductors with low voltage stress and input current ripple for renewable energy applications[C]//Proceedings of the IEEE Applied Power Electronics Conference and Exposition. Piscataway: IEEE Press, 2019: 2171-2176.
    [31] KOTHAPALLI K R, RAMTEKE M R, SURYAWANSHI H M, et al. Soft-switched ultrahigh gain DC-DC converter with voltage multiplier cell for DC microgrid[J]. IEEE Transactions on Industrial Electronics, 2021, 68(11): 11063-11075. doi: 10.1109/TIE.2020.3031453
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  92
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-31
  • 录用日期:  2023-05-10
  • 网络出版日期:  2023-05-31
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答