留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于AAGC-GRU的航班延误组合预测方法

刘晓琳 郭梦娇 李卓

刘晓琳,郭梦娇,李卓. 基于AAGC-GRU的航班延误组合预测方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(1):30-42 doi: 10.13700/j.bh.1001-5965.2022.0990
引用本文: 刘晓琳,郭梦娇,李卓. 基于AAGC-GRU的航班延误组合预测方法[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(1):30-42 doi: 10.13700/j.bh.1001-5965.2022.0990
LIU X L,GUO M J,LI Z. Combined prediction method of flight delay based on attention-based adaptive graph convolution-gated recurrent unit[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):30-42 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0990
Citation: LIU X L,GUO M J,LI Z. Combined prediction method of flight delay based on attention-based adaptive graph convolution-gated recurrent unit[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(1):30-42 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0990

基于AAGC-GRU的航班延误组合预测方法

doi: 10.13700/j.bh.1001-5965.2022.0990
基金项目: 

天津市自然科学基金(17JCYBJC18200) 

详细信息
    作者简介:

    刘晓琳等:基于自适应注意力图卷积循环网络的航班延误组合预测方法 9

    通讯作者:

    E-mail:zhuo.li1@student.kuleuven.be

  • 中图分类号: V351

Combined prediction method of flight delay based on attention-based adaptive graph convolution-gated recurrent unit

Funds: 

Natural Science Foundation of Tianjin, China (17JCYBJC18200) 

More Information
  • 摘要:

    针对航班延误预测模型中延误数据的时空动态相关性难以提取的问题,提出一种基于自适应注意力图卷积门控循环单元(AAGC-GRU)的航班延误预测模型。以机场为节点构建机场网络拓扑图,结合空间注意力机制及自适应图卷积神经网络,弥补图卷积神经网络对先验知识过度依赖的缺陷,同时增强模型对机场网络空间动态相关性的自动挖掘能力;采用门控循环单元获取航班延误数据的时间相关性,并引入时间注意力机制来学习不同时间步数据的影响权重;采用全连接层获取航班延误预测结果。利用美国大型机场网络的航班离港准点率数据集进行实验,结果表明:所提AAGC-GRU模型的预测结果在平均绝对误差、均方根误差和平均绝对百分误差方面均优于梯度提升回归树、门控循环单元及时空图卷积神经网络等基线模型。

     

  • 图 1  图结构时间序列预测

    Figure 1.  Graph sequence time series prediction

    图 2  AAGC-GRU模型结构

    Figure 2.  Architecture of AAGC-GRU model

    图 3  空间注意力机制

    Figure 3.  Spatial attention mechanism

    图 4  GRU隐藏单元内部结构

    Figure 4.  Architecture of GRU cell

    图 5  不同模型预测结果的评价指标对比

    Figure 5.  Comparison of evaluation indexes of prediction results by different models

    图 6  某天AAGC-GRU模型对机场网络的预测结果

    Figure 6.  Prediction result of airport network by AAGC-GRU model on one day

    图 7  不同模型的预测结果可视化

    Figure 7.  Visualization of prediction results by different models

    图 8  不同机场的离港准点率预测结果

    Figure 8.  Departure punctuality rate prediction results of different airports

    图 9  不同节点嵌入维度的预测结果比较

    Figure 9.  Comparison of prediction results of different node embedding dimensions

    图 10  不同GRU隐藏单元个数的预测结果比较

    Figure 10.  Comparison of prediction results of different GRU cell numbers

    图 11  自适应GCN模块消融实验结果

    Figure 11.  Results of ablation experiment of adaptive GCN module

    表  1  时空注意力机制模块的有效性实验结果

    Table  1.   Effectiveness experiment result of spatial and temporal attention mechanism module

    时间窗口/d 模型 均方根
    误差
    平均绝
    对误差
    平均绝对
    百分误差/%
    1SAttGC-GRU8.12175.94138.0927
    TAttGC-GRU8.12495.93148.0680
    AAGC-GRU8.06215.79507.9578
    2SAttGC-GRU8.46216.22928.4614
    TAttGC-GRU8.48716.19738.4793
    AAGC-GRU8.43736.10368.3697
    3SAttGC-GRU8.66046.35648.6842
    TAttGC-GRU8.70316.42568.7536
    AAGC-GRU8.58066.29618.5932
    4SAttGC-GRU8.80006.60868.9517
    TAttGC-GRU8.74766.47368.8175
    AAGC-GRU8.72906.37468.7264
    5SAttGC-GRU8.86246.68339.0345
    TAttGC-GRU8.87796.56318.9543
    AAGC-GRU8.81236.47018.8491
     注:SAttGC-GRU为AAGC-GRU去除时间注意力机制模块后的模型,TAttGC-GRU为AAGC-GRU去除空间注意力机制模块后的模型。
    下载: 导出CSV

    表  2  不同模型的时空复杂度对比分析

    Table  2.   Comparative analysis of spatial-temporal complexity of different models

    模型浮点运算量/FLOPs参数量
    SAttGC-GRU282246127408
    TAttGC-GRU282247927395
    AAGC-GRU282259127411
    下载: 导出CSV

    表  3  不同模型的预测结果

    Table  3.   Prediction results of different models

    模型 平均绝对误差 均方根误差 平均绝对百分误差/%
    HA 6.4129 8.6803 8.4935
    GRU 6.0870 8.2088 8.0911
    MLP 6.1271 8.2591 8.0938
    GBRT 6.2830 8.4737 8.3154
    STGCN 5.9704 8.0831 7.9403
    AAGC-GRU 5.8787 7.9217 7.8150
    下载: 导出CSV
  • [1] BRITTO R, DRESNER M, VOLTES A. The impact of flight delays on passenger demand and societal welfare[J]. Transportation Research Part E: Logistics and Transportation Review, 2012, 48(2): 460-469. doi: 10.1016/j.tre.2011.10.009
    [2] PEJOVIC T, NOLAND R B, WILLIAMS V, et al. A tentative analysis of the impacts of an airport closure[J]. Journal of Air Transport Management, 2009, 15(5): 241-248. doi: 10.1016/j.jairtraman.2009.02.004
    [3] RYERSON M S, HANSEN M, BONN J. Time to burn: Flight delay, terminal efficiency, and fuel consumption in the National Airspace System[J]. Transportation Research Part A: Policy and Practice, 2014, 69: 286-298. doi: 10.1016/j.tra.2014.08.024
    [4] SIMIĆ T K, BABIĆ O. Airport traffic complexity and environment efficiency metrics for evaluation of ATM measures[J]. Journal of Air Transport Management, 2015, 42: 260-271. doi: 10.1016/j.jairtraman.2014.11.008
    [5] BASPINAR B, KOYUNCU E. A data-driven air transportation delay propagation model using epidemic process models[J]. International Journal of Aerospace Engineering, 2016, 2016: 4836260.
    [6] 王春政, 胡明华, 杨磊, 等. 基于Agent模型的机场网络延误预测[J]. 航空学报, 2021, 42(7): 452-465.

    WANG C Z, HU M H, YANG L, et al. Airport network delay prediction based on Agent model[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 452-465(in Chinese).
    [7] 罗赟骞, 陈志杰, 汤锦辉, 等. 采用支持向量机回归的航班延误预测研究[J]. 交通运输系统工程与信息, 2015, 15(1): 143-149. doi: 10.3969/j.issn.1009-6744.2015.01.025

    LUO Y Q, CHEN Z J, TANG J H, et al. Flight delay prediction using support vector machine regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(1): 143-149(in Chinese). doi: 10.3969/j.issn.1009-6744.2015.01.025
    [8] REBOLLO J J, BALAKRISHNAN H. Characterization and prediction of air traffic delays[J]. Transportation Research Part C: Emerging Technologies, 2014, 44: 231-241. doi: 10.1016/j.trc.2014.04.007
    [9] CHAKRABARTY N, KUNDU T, DANDAPAT S, et al. Flight arrival delay prediction using gradient boosting classifier[C]//Proceedings of the Emerging Technologies in Data Mining and Information Security . Berlin: Springer, 2018: 651-659.
    [10] YU B, GUO Z, ASIAN S, et al. Flight delay prediction for commercial air transport: A deep learning approach[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 125: 203-221. doi: 10.1016/j.tre.2019.03.013
    [11] GUI G, LIU F, SUN J L, et al. Flight delay prediction based on aviation big data and machine learning[J]. IEEE Transactions on Vehicular Technology, 2020, 69(1): 140-150. doi: 10.1109/TVT.2019.2954094
    [12] QU J Y, ZHAO T, YE M, et al. Flight delay prediction using deep convolutional neural network based on fusion of meteorological data[J]. Neural Processing Letters, 2020, 52(2): 1461-1484. doi: 10.1007/s11063-020-10318-4
    [13] LI Z, YE L, ZHAO Y N, et al. A spatiotemporal directed graph convolution network for ultra-short-term wind power prediction[J]. IEEE Transactions on Sustainable Energy, 2023, 14(1): 39-54. doi: 10.1109/TSTE.2022.3198816
    [14] 姜雨, 陈名扬, 袁琪, 等. 基于时空图卷积神经网络的离港航班延误预测[J]. 北京亚洲成人在线一二三四五六区学报, 2023, 49(5): 1044-1052.

    JIANG Y, CHEN M Y, YUAN Q, et al. Departure flight delay prediction based on spatio-temporal graph convolutional networks[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(5): 1044-1052(in Chinese).
    [15] ZENG W L, LI J, QUAN Z B, et al. A deep graph-embedded LSTM neural network approach for airport delay prediction[J]. Journal of Advanced Transportation, 2021, 2021: 6638130.
    [16] BAO J, YANG Z, ZENG W L. Graph to sequence learning with attention mechanism for network-wide multi-step-ahead flight delay prediction[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103323. doi: 10.1016/j.trc.2021.103323
    [17] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and locally connected networks on graphs[EB/OL]. (2014-05-21)[2022-12-01]. http://arxiv.org/abs/1312.6203.
    [18] DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[EB/OL]. (2017-02-05)[2022-12-01]. http://arxiv. org/abs/1606.09375v2.
    [19] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22)[2022-12-01]. http://arxiv.org/abs/1609.02907.
    [20] 申翔翔, 侯新文, 尹传环. 深度强化学习中状态注意力机制的研究[J]. 智能系统学报, 2020, 15(2): 317-322. doi: 10.11992/tis.201809033

    SHEN X X, HOU X W, YIN C H. State attention in deep reinforcement learning[J]. CAAI Transactions on Intelligent Systems, 2020, 15(2): 317-322(in Chinese). doi: 10.11992/tis.201809033
    [21] BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL]. (2016-05-19)[2022-12-01]. http://arxiv.org/abs/1409.0473v5.
    [22] CHUNG J, GULCEHRE C, CHO K, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[EB/OL]. (2014-11-11)[2022-12-01]. http://arxiv.org/abs/1412.3555.
    [23] XIA Y, CHEN J G. Traffic flow forecasting method based on gradient boosting decision tree[C]//Proceedings of the 5th International Conference on Frontiers of Manufacturing Science and Measuring Technology. Paris: Atlantis Press, 2017: 436-439.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  772
  • HTML全文浏览量:  193
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 录用日期:  2023-01-14
  • 网络出版日期:  2023-02-28
  • 整期出版日期:  2025-01-31

目录

    /

    返回文章
    返回
    常见问答