留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Au修饰CuO/CF纳米阵列的锂金属电极

李舒睿 熊刚毅 邢雅兰 张世超

李舒睿,熊刚毅,邢雅兰,等. 基于Au修饰CuO/CF纳米阵列的锂金属电极[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2748-2756 doi: 10.13700/j.bh.1001-5965.2022.0958
引用本文: 李舒睿,熊刚毅,邢雅兰,等. 基于Au修饰CuO/CF纳米阵列的锂金属电极[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2748-2756 doi: 10.13700/j.bh.1001-5965.2022.0958
LI S R,XIONG G Y,XING Y L,et al. Lithium metal electrode based on Au-modified CuO/CF nanoarray[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2748-2756 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0958
Citation: LI S R,XIONG G Y,XING Y L,et al. Lithium metal electrode based on Au-modified CuO/CF nanoarray[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2748-2756 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0958

基于Au修饰CuO/CF纳米阵列的锂金属电极

doi: 10.13700/j.bh.1001-5965.2022.0958
基金项目: 

国家自然科学基金(51904016); 国家重点研发计划(2019YFA0705700)

详细信息
    通讯作者:

    E-mail:csc@cqjj8.com

  • 中图分类号: V221+.3;TM912.9

Lithium metal electrode based on Au-modified CuO/CF nanoarray

Funds: 

National Natural Science Foundation of China (51904016); National Key Research and Development Program of China (2019YFA0705700)

More Information
  • 摘要:

    随着临近空间飞行器的战略地位日渐增长,其对大功率、高比能、长循环储能电池体系的需求也不断提高,锂金属电池具有超高的理论容量,有望成为新一代临近空间飞行器储能电池的有力候选者。锂金属电极具有极低的氧化还原电位、较高的理论容量,但锂枝晶生长带来的各种问题一直制约着锂金属负极的应用。基于氧化刻蚀和离子交换原理,在泡沫铜(CF)上制备CuO纳米线阵列并引入Au作为亲锂位点,成功构建了Au-CuO/CF纳米阵列三维(3D)集流体并应用于锂金属电池负极,其库伦效率、循环寿命及循环稳定性均明显优于未经修饰的CuO/CF纳米阵列三维集流体,与磷酸铁锂正极(LFP)组成全电池后放电比容量高于CuO/CF纳米阵列三维集流体并在700圈循环后仍有高达97.7%的容量保持率。Au-CuO/CF纳米阵列三维集流体制备工艺简单,电化学性能优异,全电池更表现出稳定的循环性能和极高的容量保持能力,具有成为下一代高比能量锂金属电池负极集流体的应用潜力。

     

  • 图 1  Au-CuO/CF及CuO/CF纳米阵列三维集流体的XRD图谱

    Figure 1.  XRD patterns of Au-CuO/CF and CuO/CF nanoarray 3D current collectors

    图 2  Au-CuO纳米线的能谱表征

    Figure 2.  EDS characterization of Au-CuO nanowire

    图 3  Au-CuO/CF纳米阵列三维集流体的XPS分析

    Figure 3.  XPS image of Au-CuO/CF nanoarray 3D current collector

    图 4  Au-CuO/CF纳米阵列三维集流体的SEM表征

    Figure 4.  SEM image of Au-CuO/CF nanoarray 3D current collector

    图 5  Au-CuO/CF纳米阵列三维集流体的TEM表征

    Figure 5.  TEM characterization of Au-CuO/CF nanoarray 3D current collector

    图 6  Au-CuO/CF纳米阵列三维集流体沉积/剥离Li的SEM表征

    Figure 6.  SEM characterization of Au-CuO/CF nanoarray 3D current collector after Li deposition/stripping

    图 7  Au-CuO/CF和CuO/CF纳米阵列三维集流体在不同测试条件下的库伦效率

    Figure 7.  Coulombic efficiencies of Au-CuO/CF and CuO/CF nanoarray 3D current collector under different test conditions

    图 8  Au-CuO/CF纳米阵列三维集流体循环100圈后的SEM表征

    Figure 8.  SEM characterization of Au-CuO/CF nanoarray 3D current collector after 100 cycles

    图 9  Au-CuO/CF及CuO/CF纳米阵列三维集流体的充放电曲线及过电位曲线

    Figure 9.  Charging–discharging curve and overpotential curve of Au-CuO/CF and CuO/CF nanoarray 3D current collector

    图 10  Li|Au-CuO@Li/CF和Li|CuO@Li/CF对称电池在1 mA/cm2-1 mAh/cm2条件下的电压-时间曲线

    Figure 10.  Voltage–time curve of Li|Au-CuO@Li/CF and Li|CuO@Li/CF symmetrical battery under condition of1 mA/cm2-1 mAh/cm2

    图 11  Au-CuO@Li/CF|LFP及CuO@Li/CF|LFP全电池的长循环性能及倍率性能

    Figure 11.  Long-cycle performance and rate performance of Au-CuO@Li/CF|LFP and CuO@Li/CF|LFP

  • [1] 南海阳, 韩晓明, 刘洪引, 等. 国外临近空间飞行器发展现状及趋势[J]. 飞航导弹, 2014(10): 3-8.

    NAN H Y, HAN X M, LIU H Y, et al. Development status and trend of near spacecraft abroad[J]. Aerodynamic Missile Journal, 2014(10): 3-8(in Chinese).
    [2] 张海林, 周林, 马骁, 等. 临近空间飞行器发展现状及军事应用研究[J]. 飞航导弹, 2014(7): 3-7.

    ZHANG H L, ZHOU L, MA X, et al. Research on development status and military application of near space vehicles[J]. Aerodynamic Missile Journal, 2014(7): 3-7(in Chinese).
    [3] 王亚飞, 安永旺, 杨继何. 临近空间飞行器的现状及发展趋势[J]. 国防技术基础, 2010(1): 33-37.

    WANG Y F, AN Y W, YANG J H. Present situation and development trend of near-space vehicles[J]. Technology Foundation of National Defence, 2010(1): 33-37(in Chinese).
    [4] 聂万胜, 罗世彬, 丰松江, 等. 近空间飞行器关键技术及其发展趋势分析[J]. 国防科技大学学报, 2012, 34(2): 107-113. doi: 10.3969/j.issn.1001-2486.2012.02.023

    NIE W S, LUO S B, FENG S J, et al. Analysis of key technologies and development trend of near space vehicle[J]. Journal of National University of Defense Technology, 2012, 34(2): 107-113(in Chinese). doi: 10.3969/j.issn.1001-2486.2012.02.023
    [5] 马菡, 孙凤焕. 再生燃料电池发展及其在临近空间飞行器的应用分析[C]//中国航天第三专业信息网第四十届技术交流会论文集. 北京: 北京动力机械研究所, 2019: 16-23.

    MA H, SUN F H. Development of renewable fuel cell and its application to near space vehicles [C]//Proceedings of the 40th Technical Exchange of China Aerospace Third Professional Information Network. Beijing: Beijing Aerospace Propulsion Institute, 2019: 16-23(in Chinese).
    [6] 郭亚男. 应用于临近空间飞行器的分布式光储系统能量优化调度研究[D]. 北京: 北京交通大学, 2019.

    GUO Y N. Research on energy optimal scheduling of distributed optical storage system applied to near space vehicles[D]. Beijing: Beijing Jiaotong University, 2019(in Chinese).
    [7] 杨威宇, 徐国宁, 李兆杰, 等. 太阳电池在临近空间发电影响因素研究[J]. 太阳能学报, 2021, 42(12): 476-485.

    YANG W Y, XU G N, LI Z J, et al. Influence factors of solar cell power generation in near space[J]. Acta Energiae Solaris Sinica, 2021, 42(12): 476-485(in Chinese).
    [8] EVARTS E C. Lithium batteries: to the limits of lithium[J]. Nature, 2015, 526(7575): S93-S95. doi: 10.1038/526S93a
    [9] CHOI J W, AURBACH D. Promise and reality of post-lithium-ion batteries with high energy densities[J]. Nature Reviews Materials, 2016, 1(4): 16013. doi: 10.1038/natrevmats.2016.13
    [10] LIU B, ZHANG J G, SHEN G Z. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries[J]. Nano Today, 2016, 11(1): 82-97. doi: 10.1016/j.nantod.2016.02.003
    [11] XU W, WANG J L, DING F, et al. Lithium metal anodes for rechargeable batteries[J]. Energy & Environmental Science, 2014, 7(2): 513-537.
    [12] LIN D C, LIU Y Y, CUI Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017, 12(3): 194-206. doi: 10.1038/nnano.2017.16
    [13] ZAGÓRSKI J, LÓPEZ DEL AMO J M, CORDILL M J, et al. Garnet–polymer composite electrolytes: new insights on local Li-ion dynamics and electrodeposition stability with Li metal anodes[J]. ACS Applied Energy Materials, 2019, 2(3): 1734-1746. doi: 10.1021/acsaem.8b01850
    [14] LI N W, SHI Y, YIN Y X, et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes[J]. Angewandte Chemie International Edition, 2018, 57(6): 1505-1509. doi: 10.1002/anie.201710806
    [15] WANG S H, YIN Y X, ZUO T T, et al. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels[J]. Advanced Materials, 2017, 29(40): 1703729. doi: 10.1002/adma.201703729
    [16] CHENG X B, ZHANG R, ZHAO C Z, et al. Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. doi: 10.1021/acs.chemrev.7b00115
    [17] YANG Q F, CUI M N, HU J L, et al. Ultrathin defective C-N coating to enable nanostructured Li plating for Li metal batteries[J]. ACS Nano, 2020, 14(2): 1866-1878. doi: 10.1021/acsnano.9b08008
    [18] KHAN U, TANG L, DING B F, et al. Catalyst-free growth of atomically thin Bi2O2Se nanoribbons for high-performance electronics and optoelectronics[J]. Advanced Functional Materials, 2021, 31(31): 2101170. doi: 10.1002/adfm.202101170
    [19] YAN K, LU Z D, LEE H W, et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth[J]. Nature Energy, 2016, 1(3): 16010. doi: 10.1038/nenergy.2016.10
    [20] HUANG M S, YAO Z G, YANG Q F, et al. Consecutive nucleation and confinement modulation towards Li plating in seeded capsules for durable Li-metal batteries[J]. Angewandte Chemie International Edition, 2021, 60(25): 14040-14050. doi: 10.1002/anie.202102552
    [21] XU H T, LIU T Y, BAI S X, et al. Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H2O splitting[J]. Nano Letters, 2020, 20(7): 5482-5489. doi: 10.1021/acs.nanolett.0c02007
    [22] 王晨. 锂离子电池CuO负极材料的制备及其电化学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    WANG C. Preparation and electrochemical properties of CuO anode materials for lithium ion batteries[D]. Harbin: Harbin Institute of Technology, 2015(in Chinese).
  • 加载中
图(11)
计量
  • 文章访问数:  534
  • HTML全文浏览量:  127
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-30
  • 录用日期:  2023-02-28
  • 网络出版日期:  2023-03-27
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答