留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向空间应用的先进钙钛矿光伏技术

周斌 屈铎 杨晓宇 孔华 涂用广 徐国宁

周斌,屈铎,杨晓宇,等. 面向空间应用的先进钙钛矿光伏技术[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2685-2700 doi: 10.13700/j.bh.1001-5965.2022.0938
引用本文: 周斌,屈铎,杨晓宇,等. 面向空间应用的先进钙钛矿光伏技术[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2685-2700 doi: 10.13700/j.bh.1001-5965.2022.0938
ZHOU B,QU D,YANG X Y,et al. Advanced perovskite photovoltaic technology for space applications[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2685-2700 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0938
Citation: ZHOU B,QU D,YANG X Y,et al. Advanced perovskite photovoltaic technology for space applications[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2685-2700 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0938

面向空间应用的先进钙钛矿光伏技术

doi: 10.13700/j.bh.1001-5965.2022.0938
基金项目: 

国家自然科学基金(62004165)

详细信息
    通讯作者:

    E-mail:iamygtu@nwpu.edu.cn

  • 中图分类号: V419+.2;V442;TM914.4

Advanced perovskite photovoltaic technology for space applications

Funds: 

National Natural Science Foundation of China (62004165)

More Information
  • 摘要:

    针对空间极端环境对太阳能电池高性能、高能质比和长期稳定性的需求,旨在研究金属卤化物钙钛矿太阳能电池的空间应用潜力与技术进展。从临近空间强辐射、高真空和宽域温度循环等极端环境出发,分析提出太阳能电池的空间应用需具备高性能、高能质比和长期稳定性的要求。基于钙钛矿太阳能电池的结构特点,总结其在高效率、大面积、稳定性、柔性化方面的技术发展与产业化进程,重点讨论分析了钙钛矿太阳能电池的耐辐射性能和空间飞行试验。结果表明:先进钙钛矿光伏技术展现出解决未来空间应用供能需求的巨大潜力,也面临着一些实际挑战。

     

  • 图 1  空间中的航天器[4]

    Figure 1.  Spacecrafts in space[4]

    图 2  影响钙钛矿太阳能电池的空间环境因素[4]

    Figure 2.  Spatial environmental factors affecting perovskite solar cells[4]

    图 3  空间光伏技术的具体要求[4]

    Figure 3.  Specific requirements of space photovoltaic technology [4]

    图 4  钙钛矿晶体结构的示意图[16]

    Figure 4.  Schematic diagram of the perovskite crystal structure[16]

    图 5  钙钛矿的Goldschmidt容忍因子[18]

    Figure 5.  Goldschmidt tolerance factor for perovskite [18]

    图 6  层状钙钛矿的示意图[22]

    Figure 6.  Schematic representation of layered perovskite [22]

    图 7  钙钛矿太阳能电池的器件结构[25]

    Figure 7.  Device structures of perovskite solar cells[25]

    图 8  光伏技术的发展历程[29]

    Figure 8.  Evolution of photovoltaic technologies [29]

    图 9  MAPbI3的降解[30]

    Figure 9.  Degradation of MAPbI3[30]

    图 10  高效大面积钙钛矿太阳能电池的认证效率记录[31]

    Figure 10.  Certified efficiency record of high-efficiency large-area perovskite solar cells [31]

    图 11  钙钛矿薄膜大面积制造工艺示意图[41]

    Figure 11.  Schematic diagram of the large-area fabrication process for perovskite films [41]

    图 12  全球最大面积和最高转换效率的钙钛矿光伏电池模块[48]

    Figure 12.  World's largest area and highest conversion efficiency perovskite photovoltaic cell module [48]

    图 13  全球首个钙钛矿光伏建筑项目[49]

    Figure 13.  The world's first perovskite photovoltaic building project[49]

    图 14  溅射和离子镀ITO薄膜的透射光谱[55]

    Figure 14.  Transmission spectra of sputtered and ion-plated ITO films[55]

    图 15  PEN/ITO衬底的FPSCs的横截面[56]

    Figure 15.  Cross-section of FPSCs on PEN/ITO substrate [56]

    图 16  基于Ti导线的柔性PSCs [59]

    Figure 16.  Flexible PSCs based on Ti conductors [59]

    图 17  使用CNT纤维的柔性PSCs的结构[60]

    Figure 17.  Structure of flexible PSCs using CNT fibers [60]

    图 18  柔性器件的机械稳定性 [61]

    Figure 18.  Mechanical stability of flexible devices [61]

    图 19  指纹传感器和用柔性图像传感器拍摄的彩色图像[62]

    Figure 19.  Fingerprint sensor and color image taken with a flexible image sensor[62]

    图 20  PSCs对高能电子束辐射的耐受性[68]

    Figure 20.  Tolerance of PSCs to high-energy electron beam radiation[68]

    图 21  辐射测试的PSC结构及电子束辐射前后FTO玻璃基板的透光率和照片[68]

    Figure 21.  Radiation-tested PSC structure, transmittance and photographs of FTO glass substrate before and after electron beam radiation[68]

    图 22  钙钛矿太阳能电池各参数与质子剂量的函数关系 [72]

    Figure 22.  Parameters of perovskite solar cells as a function of proton dose[72]

    图 23  Si和PSCs被不同能量的质子辐照后的相对质子诱导量子效率[73]

    Figure 23.  Relative proton-induced quantum efficiencies of Si and PSCs after irradiation by protons with different energies respectively[73]

    图 24  模拟基于石英衬底的PSCs 10 MeV、20 MeV、68 MeV和1 GeV质子束的穿透[75]

    Figure 24.  Penetration of 10 MeV, 20 MeV, 68 MeV and 1 GeV proton beams in simulated quartz and PSCs[75]

    图 25  器件在1012 p/cm2不同质子辐照前后的统计图[73]

    Figure 25.  Statistics of the device before and after irradiation with different protons at 1012 p/cm2[73]

    图 26  混合阳离子钙钛矿太阳能电池的临近空间飞行[4]

    Figure 26.  Near-space flight of hybrid cationic perovskite solar cells[4]

    图 27  搭载钙钛矿器件探空火箭飞行的示意图[79]

    Figure 27.  Schematic of a sounding rocket flight with a perovskite device [79]

    图 28  安装在国际空间站实验装置的MAPbI3薄膜样品[81]

    Figure 28.  MAPbI3 thin film samples mounted on the ISS experimental setup [81]

    图 29  空间打印钙钛矿太阳能模组[83]

    Figure 29.  Space-printed perovskite solar module [83]

    表  1  聚合物基材的性能参数

    Table  1.   1 Performance parameters of polymer substrate

    基底 玻璃化转变温度/℃ 熔点/℃ 密度/(g·cm−3 模量/103 MPa 工作温度/℃ 热膨胀系数/(10−6−1 吸水率/% 耐溶剂性 尺寸稳定性
    PEN 120~155 269 1.36 0.1~0.5 20 0.3~0.4
    PET 70~110 115~258 1.39 2~4.1 −50~150 15~33 0.4~0.6
    聚酰亚胺 (PI) 155~270 250~452 1.35~1.43 2.5 <400 8~20 1.3~3.0 中等
    聚碳酸酯(PC) 145 115~160 1.20~1.22 2.0~2.6 −40~130 75 0.16~0.35 中等
    下载: 导出CSV
  • [1] 黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62.

    HUANG W N, ZHANG X J, LI Z B, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019, 37(21): 46-62(in Chinese).
    [2] KIM H S, LEE C R, IM J H. et al. Lead Iodide perovskite sensitized all-solidstate submicron thin film mesoscopic solar cell with efficiency exceeding 9% [J]. Scientific Report, 2012, 2(1): 591.
    [3] National Renewable Energy Laboratory. Best research-cell efficiency chart [EB/OL]. (2023-02-01) [2023-04-10]. http://www.nrel.gov/pv/cell-efficiency.html.
    [4] TU Y G, WU J, XU G N, et al. Perovskite solar cells for space applications: progress and challenges[J]. Advanced Materials, 2021, 33(21): 2006545. doi: 10.1002/adma.202006545
    [5] MUKHERJEE B, WU X F, MACZKA T, et al. Near space radiation dosimetry in Australian outback using a balloon borne energy compensated PIN diode detector[J]. Radiation Measurements, 2016, 94: 65-72. doi: 10.1016/j.radmeas.2016.09.007
    [6] YU D J, WANG P, CAO F, et al. Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring[J]. Nature Communications, 2020, 11(1): 3395. doi: 10.1038/s41467-020-17114-7
    [7] BENTON E R, BENTON E V. Space radiation dosimetry in low-Earth orbit and beyond[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 184(1-2): 255-294.
    [8] HOHEISEL R, WILT D, SCHEIMAN D, et al. AM0 solar cell calibration under near space conditions[C]//Proceedings of the IEEE 40th Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2014: 1811-1814.
    [9] WOODYARD J R, LANDIS G A. Radiation resistance of thin-film solar cells for space photovoltaic power[J]. Solar Cells, 1991, 31(4): 297-329. doi: 10.1016/0379-6787(91)90103-V
    [10] TU Y G, XU G N, YANG X Y, et al. Mixed-cation perovskite solar cells in space[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(7): 974221.
    [11] BETT A W, PHILIPPS S P, ESSIG S, et al. Overview about technology perspectives for high efficiency solar cells for space and terrestrial applications [C]//Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition. Paris : PVSEC, 2013: 1-6.
    [12] MOHR N J, SCHERMER J J, HUIJBREGTS M A J, et al. Life cycle assessment of thin-film GaAs and GaInP/GaAs solar modules[J]. Progress in Photovoltaics: Research and Applications, 2007, 15(2): 163-179. doi: 10.1002/pip.735
    [13] KALTENBRUNNER M, ADAM G, GŁOWACKI E D, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air[J]. Nature Materials, 2015, 14(10): 1032-1039. doi: 10.1038/nmat4388
    [14] ILES P A. Evolution of space solar cells[J]. Solar Energy Materials and Solar Cells, 2001, 68(1): 1-13. doi: 10.1016/S0927-0248(00)00341-X
    [15] ZHANG W, EPERON G E, SNAITH H J. Metal halide perovskites for energy applications[J]. Nature Energy, 2016, 1(6): 16048. doi: 10.1038/nenergy.2016.48
    [16] ROMANO V, AGRESTI A, VERDUCI R, et al. Advances in perovskites for photovoltaic applications in space[J]. ACS Energy Letters, 2022, 7(8): 2490-2514. doi: 10.1021/acsenergylett.2c01099
    [17] LI Z, YANG M J, PARK J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials, 2016, 28(1): 284-292. doi: 10.1021/acs.chemmater.5b04107
    [18] FU Y P, HAUTZINGER M P, LUO Z Y, et al. Incorporating large a cations into lead iodide perovskite cages: relaxed Goldschmidt tolerance factor and impact on exciton-phonon interaction[J]. ACS Central Science, 2019, 5(8): 1377-1386. doi: 10.1021/acscentsci.9b00367
    [19] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693. doi: 10.1126/sciadv.aav0693
    [20] TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system[J]. Chemical Science, 2016, 7(7): 4548-4556. doi: 10.1039/C5SC04845A
    [21] GAO W Y, CHEN C S, RAN C X, et al. A-site cation engineering of metal halide perovskites: version 3.0 of efficient tin-based lead-free perovskite solar cells[J]. Advanced Functional Materials, 2020, 30(34): 2000794. doi: 10.1002/adfm.202000794
    [22] SIRBU D, BALOGUN F H, MILOT R L, et al. Layered perovskites in solar cells: structure, optoelectronic properties, and device design[J]. Advanced Energy Materials, 2021, 11(24): 2003877. doi: 10.1002/aenm.202003877
    [23] ZHANG Y L, WANG P J, TANG M C, et al. Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics[J]. Journal of the American Chemical Society, 2019, 141(6): 2684-2694. doi: 10.1021/jacs.8b13104
    [24] SOE C M, STOUMPOS C, KEPENEKIAN M, et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance[J]. Journal of the American Chemical Society, 2017, 139(45): 16297-16309. doi: 10.1021/jacs.7b09096
    [25] BAI Y, MENG X Y, YANG S H. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells[J]. Advanced Energy Materials, 2018, 8(5): 1701883. doi: 10.1002/aenm.201701883
    [26] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. doi: 10.1021/ja809598r
    [27] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591. doi: 10.1038/srep00591
    [28] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 2021, 598(7881): 444-450. doi: 10.1038/s41586-021-03964-8
    [29] VERDUCI R, ROMANO V, BRUNETTI G, et al. Solar energy in space applications: review and technology perspectives[J]. Advanced Energy Materials, 2022, 12(29): 2200125. doi: 10.1002/aenm.202200125
    [30] LEGUY A M A, HU Y H, CAMPOY-QUILES M, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells[J]. Chemistry of Materials, 2015, 27(9): 3397-3407. doi: 10.1021/acs.chemmater.5b00660
    [31] LI D Y, ZHANG D Y, LIM K S, et al. A review on scaling up perovskite solar cells[J]. Advanced Functional Materials, 2021, 31(12): 2008621. doi: 10.1002/adfm.202008621
    [32] PENG J, WALTER D, REN Y, et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells[J]. Science, 2021, 371(6527): 390-395. doi: 10.1126/science.abb8687
    [33] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 55)[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(1): 3-15. doi: 10.1002/pip.3228
    [34] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 56)[J]. Progress in Photovoltaics, 2020, 28(7): 629-638. doi: 10.1002/pip.3303
    [35] GALAGAN Y, COENEN E W C, VERHEES W J H, et al. Towards the scaling up of perovskite solar cells and modules[J]. Journal of Materials Chemistry A, 2016, 4(15): 5700-5705. doi: 10.1039/C6TA01134A
    [36] ONO L K, PARK N G, ZHU K, et al. Perovskite solar cells-towards commercialization[J]. ACS Energy Letters, 2017, 2(8): 1749-1751. doi: 10.1021/acsenergylett.7b00517
    [37] WHITAKER J B, KIM D H, LARSON BRYON W, et al. Scalable slot-die coating of high performance perovskite solar cells[J]. Sustainable Energy & Fuels, 2018, 2(11): 2442-2449.
    [38] DOU B, WHITAKER J B, BRUENING K, et al. Roll-to-roll printing of perovskite solar cells[J]. ACS Energy Letters, 2018, 3(10): 2558-2565. doi: 10.1021/acsenergylett.8b01556
    [39] OUYANG Z L, YANG M J, WHITAKER J B, et al. Toward scalable perovskite solar modules using blade coating and rapid thermal processing[J]. Acs Applied Energy Materials, 2020, 3(4): 3714-3720. doi: 10.1021/acsaem.0c00180
    [40] BISHOP J E, READ C D, SMITH J A, et al. Fully spray-coated triple-cation perovskite solar cells[J]. Scientific Reports, 2020, 10(1): 6610. doi: 10.1038/s41598-020-63674-5
    [41] SWARTWOUT R, HOERANTNER M T, BULOVIĆ V. Scalable deposition methods for large-area production of perovskite thin films[J]. Energy & Environmental Materials, 2019, 2(2): 119-145.
    [42] KE W J, FANG G J, LIU Q, et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137(21): 6730-6733. doi: 10.1021/jacs.5b01994
    [43] ZHU Z L, BAI Y, LIU X, et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer[J]. Advanced Materials, 2016, 28(30): 6478-6484. doi: 10.1002/adma.201600619
    [44] ZHANG J, SUN Q, CHEN Q Y, et al. High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material[J]. Advanced Functional Materials, 2019, 29(22): 1900484. doi: 10.1002/adfm.201900484
    [45] WU G H, ZHANG Y H, KANEKO R, et al. Facile synthesis of “lucky clover” hole-transport material for efficient and stable large-area perovskite solar cells[J]. Journal of Power Sources, 2020, 454: 227938. doi: 10.1016/j.jpowsour.2020.227938
    [46] BI E B, TANG W T, CHEN H, et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers[J]. Joule, 2019, 3(11): 2748-2760. doi: 10.1016/j.joule.2019.07.030
    [47] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 60)[J]. Progress in Photovoltaics: Research and Applications, 2022, 30(7): 687-701. doi: 10.1002/pip.3595
    [48] MICROQUANTA . 21.8%! Microquanta improves perovskite module photovoltaic conversion efficiency [EB/OL]. (2022-09-24) [2023-04-10]. http://tech.china.com/article/20220924/092022_1148843.html.
    [49] GCL OPTOELECTRONICS. The world's first perovskite hut “appeared” in the Winter Olympics! GCL Product [EB/OL]. (2022-02-21)[2023-04-10]. http://www.gcl-ee.com/news_61/1290.html.
    [50] HU Y, ZHANG S, SHU T, et al. Highly efficient flexible solar cells based on a room-temperature processed inorganic perovskite[J]. Journal of Materials Chemistry A, 2018, 6(41): 20365-20373. doi: 10.1039/C8TA06719H
    [51] YANG X, YANG H, HU X, et al. Low-temperature interfacial engineering for flexible cspbi2br perovskite solar cells with high performance beyond 15%[J]. Journal of Materials Chemistry A, 2020, 8(10): 5308-5314. doi: 10.1039/C9TA13922B
    [52] LIU D, YANG C, BATES M, et al. Room temperature processing of inorganic perovskite films to enable flexible solar cells[J]. iScience, 2018, 6: 272-279. doi: 10.1016/j.isci.2018.08.005
    [53] TAN Y, XIAO B, XU P, et al. Improving the photovoltaic performance of flexible solar cells with semitransparent inorganic perovskite active layers by interface engineering[J]. Acs Applied Materials & Interfaces, 2021, 13(17): 20034-20042.
    [54] PANDEY M, WANG Z, KAPIL G, et al. Dependence of ito-coated flexible substrates in the performance and bending durability of perovskite solar cells[J]. Advanced Engineering Materials, 2019, 21(8): 1900288. doi: 10.1002/adem.201900288
    [55] KIM J H, SEOK H J, SEO H J, et al. Flexible ito films with atomically flat surfaces for high performance flexible perovskite solar cells[J]. Nanoscale, 2018, 10(44): 20587-20598. doi: 10.1039/C8NR06586A
    [56] KIM B J, KIM D H, LEE Y Y, et al. Highly efficient and bending durable perovskite solar cells: toward a wearable power source[J]. Energy & Environmental Science, 2015, 8(3): 916-921.
    [57] HAN G S, LEE S, DUFF M L, et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates[J]. Acs Applied Materials & Interfaces, 2018, 10(5): 4697-4704.
    [58] YOON J, HOU Y, KNOEPFEL A M, et al. Bio-inspired strategies for next-generation perovskite solar mobile power sources[J]. Chemical Society Reviews, 2021, 50(23): 12915-12984. doi: 10.1039/D0CS01493A
    [59] HU H, YAN K, PENG M, et al. Fiber-shaped perovskite solar cells with 5.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(10): 3901-3906. doi: 10.1039/C5TA09280A
    [60] LI R, XIANG X, TONG X, et al. Wearable double-twisted fibrous perovskite solar cell[J]. Advanced Materials, 2015, 27(25): 3831-3835. doi: 10.1002/adma.201501333
    [61] YANG L, FENG J, LIU Z, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation[J]. Advanced Materials, 2022, 34(24): 2201681. doi: 10.1002/adma.202201681
    [62] VAN BREEMEN A J M, OLLEARO R, SHANMUGAM S, et al. A thin and flexible scanner for fingerprints and documents based on metal halide perovskites[J]. Nature Electronics, 2021, 4(11): 818-826. doi: 10.1038/s41928-021-00662-1
    [63] LI M H, ZHOU J, TAN L G, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency[J]. The Innovation, 2022, 3(6): 100310. doi: 10.1016/j.xinn.2022.100310
    [64] MIYAZAWA Y, IKEGAMI M, MIYASAKA T, et al. Evaluation of radiation tolerance of perovskite solar cell for use in space[C]// Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2015: 1-4.
    [65] HUANG J S, KELZENBERG M D, ESPINET-GONZÁLEZ P, et al. Effects of electron and proton radiation on perovskite solar cells for space solar power application[C]//Proceedings of the IEEE 44th Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2017: 1248-1252.
    [66] YAMAGUCHI M. Radiation-resistant solar cells for space use[J]. Solar Energy Materials and Solar Cells, 2001, 68(1): 31-53. doi: 10.1016/S0927-0248(00)00344-5
    [67] MIYAZAWA Y, IKEGAMI M, CHEN H W, et al. Tolerance of perovskite solar cell to high-energy particle irradiations in space environment[J]. iScience, 2018, 2: 148-155. doi: 10.1016/j.isci.2018.03.020
    [68] SONG Z N, LI C W, CHEN C, et al. High remaining factors in the photovoltaic performance of perovskite solar cells after high-fluence electron beam irradiations[J]. Journal of Physical Chemistry C, 2020, 124(2): 1330-1336. doi: 10.1021/acs.jpcc.9b11483
    [69] IMAIZUMI M, NAKAMURA T, TAKAMOTO T, et al. Radiation degradation characteristics of component subcells in inverted metamorphic triple-junction solar cells irradiated with electrons and protons[J]. Progress in Photovoltaics, 2017, 25(2): 161-174. doi: 10.1002/pip.2840
    [70] MOTTL D, NYMMIK R. Errors in the particle flux measurement data relevant to solar energetic particle spectra [J]. Advances in Space Research, 2003, 32(11): 2349-2353.
    [71] NEITZERT H C, SPINILLO P, BELLONE S, et al. Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell[J]. Solar Energy Materials and Solar Cells, 2004, 83(4): 435-446. doi: 10.1016/j.solmat.2004.01.035
    [72] LANG F, NICKEL N H, BUNDESMANN J, et al. Radiation hardness and self-healing of perovskite solar cells[J]. Advanced Materials, 2016, 28(39): 8726-8731. doi: 10.1002/adma.201603326
    [73] LANG F, JOŠT M, BUNDESMANN J, et al. Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation[J]. Energy & Environmental Science, 2019, 12(5): 1634-1647.
    [74] LUO Z Y, CHEN T B, AHYI A C, et al. Proton radiation effects in 4h-sic diodes and mos capacitors[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3748-3752. doi: 10.1109/TNS.2004.839254
    [75] MARKVART T. Radiation-damage in solar-cells[J]. Journal of Materials Science-Materials in Electronics, 1990, 1(1): 1-12. doi: 10.1007/BF00716008
    [76] BARBE J, HUGHES D, WEI Z F, et al. Radiation hardness of perovskite solar cells based on aluminum-doped zinc oxide electrode under proton irradiation[J]. Solar RRL, 2019, 3(12): 1900219. doi: 10.1002/solr.201900219
    [77] CARDINALETTI I, VANGERVEN T, NAGELS S, et al. Organic and perovskite solar cells for space applications[J]. Solar Energy Materials and Solar Cells, 2018, 182: 121-127. doi: 10.1016/j.solmat.2018.03.024
    [78] TU Y, XU G, YANG X, et al. Mixed-cation perovskite solar cells in space [J]. Science China Physics, Mechanics & Astronomy, 2019, 62: 1-4.
    [79] REB L K, BÖHMER M, PREDESCHLY B, et al. Perovskite and organic solar cells on a rocket flight[J]. Joule, 2020, 4(9): 1880-1892. doi: 10.1016/j.joule.2020.07.004
    [80] National Renewable Energy Laboratory. Space mission tests nrel perovskite solar cells [EB/OL]. (2021-08-27)[2023-04-10]. http://www.nrel.gov/news/features/2021/space-mission-tests-nrel-perovskite-solar-cells.html.
    [81] NASA. 10-month voyage proves solar cell material survives, thrives in space [EB/OL]. (2020-03-07)[2023-04-10]. http://www.nasa.gov/general/10-month-voyage-proves-solar-cell-material-survives-thrives-in-space.html.
    [82] WANG H, JIANG X, CAO Y, et al. The first record of diurnal performance evolution of perovskite solar cells in near space[J]. Advanced Energy Materials, 2022, 13(2): 202202643.
    [83] MCMILLON-BROWN L, LUTHER J M, PESHEK T J. What would it take to manufacture perovskite solar cells in space?[J]. ACS Energy Letters, 2022, 7(3): 1040-1042. doi: 10.1021/acsenergylett.2c00276
  • 加载中
图(29) / 表(1)
计量
  • 文章访问数:  666
  • HTML全文浏览量:  159
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-22
  • 录用日期:  2023-02-11
  • 网络出版日期:  2023-04-10
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答