-
摘要:
针对空间极端环境对太阳能电池高性能、高能质比和长期稳定性的需求,旨在研究金属卤化物钙钛矿太阳能电池的空间应用潜力与技术进展。从临近空间强辐射、高真空和宽域温度循环等极端环境出发,分析提出太阳能电池的空间应用需具备高性能、高能质比和长期稳定性的要求。基于钙钛矿太阳能电池的结构特点,总结其在高效率、大面积、稳定性、柔性化方面的技术发展与产业化进程,重点讨论分析了钙钛矿太阳能电池的耐辐射性能和空间飞行试验。结果表明:先进钙钛矿光伏技术展现出解决未来空间应用供能需求的巨大潜力,也面临着一些实际挑战。
Abstract:Metal halide perovskite-type semiconductors have received extensive attention in the photovoltaic field due to their low cost and excellent performance. Perovskite solar cells have gradually become a new generation of photovoltaic technology for space/near-space applications due to their high photoelectric conversion efficiency, long-term stability, flexible fabrication, and good radiation resistance. In this paper, it was proposed that solar cells for space applications should achieve high performance, a high energy-to-mass ratio, and long-term stability due to extreme environments of strong radiation, high vacuum, and wide temperature cycles in near space. In addition, the structural characteristics of perovskite solar cells were introduced, and their technical development and industrialization process in terms of high efficiency, large area, stability, and flexibility were summarized. In order to meet the energy demand of space applications in the future, the paper discussed the radiation resistance performance and space flight tests of perovskite solar cells, providing theoretical guidance for the development of perovskite solar cell technology for space applications.
-
Key words:
- space /
- perovskite /
- solar cell /
- environment tolerance /
- flexible structure /
- radiation effect /
- space flight
-
表 1 聚合物基材的性能参数
Table 1. 1 Performance parameters of polymer substrate
基底 玻璃化转变温度/℃ 熔点/℃ 密度/(g·cm−3) 模量/103 MPa 工作温度/℃ 热膨胀系数/(10−6℃−1) 吸水率/% 耐溶剂性 尺寸稳定性 PEN 120~155 269 1.36 0.1~0.5 20 0.3~0.4 好 好 PET 70~110 115~258 1.39 2~4.1 −50~150 15~33 0.4~0.6 好 好 聚酰亚胺 (PI) 155~270 250~452 1.35~1.43 2.5 <400 8~20 1.3~3.0 好 中等 聚碳酸酯(PC) 145 115~160 1.20~1.22 2.0~2.6 −40~130 75 0.16~0.35 差 中等 -
[1] 黄宛宁, 张晓军, 李智斌, 等. 临近空间科学技术的发展现状及应用前景[J]. 科技导报, 2019, 37(21): 46-62.HUANG W N, ZHANG X J, LI Z B, et al. Development status and application prospect of near space science and technology[J]. Science & Technology Review, 2019, 37(21): 46-62(in Chinese). [2] KIM H S, LEE C R, IM J H. et al. Lead Iodide perovskite sensitized all-solidstate submicron thin film mesoscopic solar cell with efficiency exceeding 9% [J]. Scientific Report, 2012, 2(1): 591. [3] National Renewable Energy Laboratory. Best research-cell efficiency chart [EB/OL]. (2023-02-01) [2023-04-10]. http://www.nrel.gov/pv/cell-efficiency.html. [4] TU Y G, WU J, XU G N, et al. Perovskite solar cells for space applications: progress and challenges[J]. Advanced Materials, 2021, 33(21): 2006545. doi: 10.1002/adma.202006545 [5] MUKHERJEE B, WU X F, MACZKA T, et al. Near space radiation dosimetry in Australian outback using a balloon borne energy compensated PIN diode detector[J]. Radiation Measurements, 2016, 94: 65-72. doi: 10.1016/j.radmeas.2016.09.007 [6] YU D J, WANG P, CAO F, et al. Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring[J]. Nature Communications, 2020, 11(1): 3395. doi: 10.1038/s41467-020-17114-7 [7] BENTON E R, BENTON E V. Space radiation dosimetry in low-Earth orbit and beyond[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2001, 184(1-2): 255-294. [8] HOHEISEL R, WILT D, SCHEIMAN D, et al. AM0 solar cell calibration under near space conditions[C]//Proceedings of the IEEE 40th Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2014: 1811-1814. [9] WOODYARD J R, LANDIS G A. Radiation resistance of thin-film solar cells for space photovoltaic power[J]. Solar Cells, 1991, 31(4): 297-329. doi: 10.1016/0379-6787(91)90103-V [10] TU Y G, XU G N, YANG X Y, et al. Mixed-cation perovskite solar cells in space[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(7): 974221. [11] BETT A W, PHILIPPS S P, ESSIG S, et al. Overview about technology perspectives for high efficiency solar cells for space and terrestrial applications [C]//Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition. Paris : PVSEC, 2013: 1-6. [12] MOHR N J, SCHERMER J J, HUIJBREGTS M A J, et al. Life cycle assessment of thin-film GaAs and GaInP/GaAs solar modules[J]. Progress in Photovoltaics: Research and Applications, 2007, 15(2): 163-179. doi: 10.1002/pip.735 [13] KALTENBRUNNER M, ADAM G, GŁOWACKI E D, et al. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air[J]. Nature Materials, 2015, 14(10): 1032-1039. doi: 10.1038/nmat4388 [14] ILES P A. Evolution of space solar cells[J]. Solar Energy Materials and Solar Cells, 2001, 68(1): 1-13. doi: 10.1016/S0927-0248(00)00341-X [15] ZHANG W, EPERON G E, SNAITH H J. Metal halide perovskites for energy applications[J]. Nature Energy, 2016, 1(6): 16048. doi: 10.1038/nenergy.2016.48 [16] ROMANO V, AGRESTI A, VERDUCI R, et al. Advances in perovskites for photovoltaic applications in space[J]. ACS Energy Letters, 2022, 7(8): 2490-2514. doi: 10.1021/acsenergylett.2c01099 [17] LI Z, YANG M J, PARK J S, et al. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys[J]. Chemistry of Materials, 2016, 28(1): 284-292. doi: 10.1021/acs.chemmater.5b04107 [18] FU Y P, HAUTZINGER M P, LUO Z Y, et al. Incorporating large a cations into lead iodide perovskite cages: relaxed Goldschmidt tolerance factor and impact on exciton-phonon interaction[J]. ACS Central Science, 2019, 5(8): 1377-1386. doi: 10.1021/acscentsci.9b00367 [19] BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances, 2019, 5(2): eaav0693. doi: 10.1126/sciadv.aav0693 [20] TRAVIS W, GLOVER E N K, BRONSTEIN H, et al. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system[J]. Chemical Science, 2016, 7(7): 4548-4556. doi: 10.1039/C5SC04845A [21] GAO W Y, CHEN C S, RAN C X, et al. A-site cation engineering of metal halide perovskites: version 3.0 of efficient tin-based lead-free perovskite solar cells[J]. Advanced Functional Materials, 2020, 30(34): 2000794. doi: 10.1002/adfm.202000794 [22] SIRBU D, BALOGUN F H, MILOT R L, et al. Layered perovskites in solar cells: structure, optoelectronic properties, and device design[J]. Advanced Energy Materials, 2021, 11(24): 2003877. doi: 10.1002/aenm.202003877 [23] ZHANG Y L, WANG P J, TANG M C, et al. Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics[J]. Journal of the American Chemical Society, 2019, 141(6): 2684-2694. doi: 10.1021/jacs.8b13104 [24] SOE C M, STOUMPOS C, KEPENEKIAN M, et al. New type of 2D perovskites with alternating cations in the interlayer space, (C(NH2)3)(CH3NH3)nPbnI3n+1: structure, properties, and photovoltaic performance[J]. Journal of the American Chemical Society, 2017, 139(45): 16297-16309. doi: 10.1021/jacs.7b09096 [25] BAI Y, MENG X Y, YANG S H. Interface engineering for highly efficient and stable planar p-i-n perovskite solar cells[J]. Advanced Energy Materials, 2018, 8(5): 1701883. doi: 10.1002/aenm.201701883 [26] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. doi: 10.1021/ja809598r [27] KIM H S, LEE C R, IM J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2: 591. doi: 10.1038/srep00591 [28] MIN H, LEE D Y, KIM J, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes[J]. Nature, 2021, 598(7881): 444-450. doi: 10.1038/s41586-021-03964-8 [29] VERDUCI R, ROMANO V, BRUNETTI G, et al. Solar energy in space applications: review and technology perspectives[J]. Advanced Energy Materials, 2022, 12(29): 2200125. doi: 10.1002/aenm.202200125 [30] LEGUY A M A, HU Y H, CAMPOY-QUILES M, et al. Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells[J]. Chemistry of Materials, 2015, 27(9): 3397-3407. doi: 10.1021/acs.chemmater.5b00660 [31] LI D Y, ZHANG D Y, LIM K S, et al. A review on scaling up perovskite solar cells[J]. Advanced Functional Materials, 2021, 31(12): 2008621. doi: 10.1002/adfm.202008621 [32] PENG J, WALTER D, REN Y, et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells[J]. Science, 2021, 371(6527): 390-395. doi: 10.1126/science.abb8687 [33] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 55)[J]. Progress in Photovoltaics: Research and Applications, 2020, 28(1): 3-15. doi: 10.1002/pip.3228 [34] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 56)[J]. Progress in Photovoltaics, 2020, 28(7): 629-638. doi: 10.1002/pip.3303 [35] GALAGAN Y, COENEN E W C, VERHEES W J H, et al. Towards the scaling up of perovskite solar cells and modules[J]. Journal of Materials Chemistry A, 2016, 4(15): 5700-5705. doi: 10.1039/C6TA01134A [36] ONO L K, PARK N G, ZHU K, et al. Perovskite solar cells-towards commercialization[J]. ACS Energy Letters, 2017, 2(8): 1749-1751. doi: 10.1021/acsenergylett.7b00517 [37] WHITAKER J B, KIM D H, LARSON BRYON W, et al. Scalable slot-die coating of high performance perovskite solar cells[J]. Sustainable Energy & Fuels, 2018, 2(11): 2442-2449. [38] DOU B, WHITAKER J B, BRUENING K, et al. Roll-to-roll printing of perovskite solar cells[J]. ACS Energy Letters, 2018, 3(10): 2558-2565. doi: 10.1021/acsenergylett.8b01556 [39] OUYANG Z L, YANG M J, WHITAKER J B, et al. Toward scalable perovskite solar modules using blade coating and rapid thermal processing[J]. Acs Applied Energy Materials, 2020, 3(4): 3714-3720. doi: 10.1021/acsaem.0c00180 [40] BISHOP J E, READ C D, SMITH J A, et al. Fully spray-coated triple-cation perovskite solar cells[J]. Scientific Reports, 2020, 10(1): 6610. doi: 10.1038/s41598-020-63674-5 [41] SWARTWOUT R, HOERANTNER M T, BULOVIĆ V. Scalable deposition methods for large-area production of perovskite thin films[J]. Energy & Environmental Materials, 2019, 2(2): 119-145. [42] KE W J, FANG G J, LIU Q, et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137(21): 6730-6733. doi: 10.1021/jacs.5b01994 [43] ZHU Z L, BAI Y, LIU X, et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2 nanocrystals as the robust electron-transporting layer[J]. Advanced Materials, 2016, 28(30): 6478-6484. doi: 10.1002/adma.201600619 [44] ZHANG J, SUN Q, CHEN Q Y, et al. High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material[J]. Advanced Functional Materials, 2019, 29(22): 1900484. doi: 10.1002/adfm.201900484 [45] WU G H, ZHANG Y H, KANEKO R, et al. Facile synthesis of “lucky clover” hole-transport material for efficient and stable large-area perovskite solar cells[J]. Journal of Power Sources, 2020, 454: 227938. doi: 10.1016/j.jpowsour.2020.227938 [46] BI E B, TANG W T, CHEN H, et al. Efficient perovskite solar cell modules with high stability enabled by iodide diffusion barriers[J]. Joule, 2019, 3(11): 2748-2760. doi: 10.1016/j.joule.2019.07.030 [47] GREEN M A, DUNLOP E D, HOHL-EBINGER J, et al. Solar cell efficiency tables (version 60)[J]. Progress in Photovoltaics: Research and Applications, 2022, 30(7): 687-701. doi: 10.1002/pip.3595 [48] MICROQUANTA . 21.8%! Microquanta improves perovskite module photovoltaic conversion efficiency [EB/OL]. (2022-09-24) [2023-04-10]. http://tech.china.com/article/20220924/092022_1148843.html. [49] GCL OPTOELECTRONICS. The world's first perovskite hut “appeared” in the Winter Olympics! GCL Product [EB/OL]. (2022-02-21)[2023-04-10]. http://www.gcl-ee.com/news_61/1290.html. [50] HU Y, ZHANG S, SHU T, et al. Highly efficient flexible solar cells based on a room-temperature processed inorganic perovskite[J]. Journal of Materials Chemistry A, 2018, 6(41): 20365-20373. doi: 10.1039/C8TA06719H [51] YANG X, YANG H, HU X, et al. Low-temperature interfacial engineering for flexible cspbi2br perovskite solar cells with high performance beyond 15%[J]. Journal of Materials Chemistry A, 2020, 8(10): 5308-5314. doi: 10.1039/C9TA13922B [52] LIU D, YANG C, BATES M, et al. Room temperature processing of inorganic perovskite films to enable flexible solar cells[J]. iScience, 2018, 6: 272-279. doi: 10.1016/j.isci.2018.08.005 [53] TAN Y, XIAO B, XU P, et al. Improving the photovoltaic performance of flexible solar cells with semitransparent inorganic perovskite active layers by interface engineering[J]. Acs Applied Materials & Interfaces, 2021, 13(17): 20034-20042. [54] PANDEY M, WANG Z, KAPIL G, et al. Dependence of ito-coated flexible substrates in the performance and bending durability of perovskite solar cells[J]. Advanced Engineering Materials, 2019, 21(8): 1900288. doi: 10.1002/adem.201900288 [55] KIM J H, SEOK H J, SEO H J, et al. Flexible ito films with atomically flat surfaces for high performance flexible perovskite solar cells[J]. Nanoscale, 2018, 10(44): 20587-20598. doi: 10.1039/C8NR06586A [56] KIM B J, KIM D H, LEE Y Y, et al. Highly efficient and bending durable perovskite solar cells: toward a wearable power source[J]. Energy & Environmental Science, 2015, 8(3): 916-921. [57] HAN G S, LEE S, DUFF M L, et al. Highly bendable flexible perovskite solar cells on a nanoscale surface oxide layer of titanium metal plates[J]. Acs Applied Materials & Interfaces, 2018, 10(5): 4697-4704. [58] YOON J, HOU Y, KNOEPFEL A M, et al. Bio-inspired strategies for next-generation perovskite solar mobile power sources[J]. Chemical Society Reviews, 2021, 50(23): 12915-12984. doi: 10.1039/D0CS01493A [59] HU H, YAN K, PENG M, et al. Fiber-shaped perovskite solar cells with 5.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(10): 3901-3906. doi: 10.1039/C5TA09280A [60] LI R, XIANG X, TONG X, et al. Wearable double-twisted fibrous perovskite solar cell[J]. Advanced Materials, 2015, 27(25): 3831-3835. doi: 10.1002/adma.201501333 [61] YANG L, FENG J, LIU Z, et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation[J]. Advanced Materials, 2022, 34(24): 2201681. doi: 10.1002/adma.202201681 [62] VAN BREEMEN A J M, OLLEARO R, SHANMUGAM S, et al. A thin and flexible scanner for fingerprints and documents based on metal halide perovskites[J]. Nature Electronics, 2021, 4(11): 818-826. doi: 10.1038/s41928-021-00662-1 [63] LI M H, ZHOU J, TAN L G, et al. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency[J]. The Innovation, 2022, 3(6): 100310. doi: 10.1016/j.xinn.2022.100310 [64] MIYAZAWA Y, IKEGAMI M, MIYASAKA T, et al. Evaluation of radiation tolerance of perovskite solar cell for use in space[C]// Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2015: 1-4. [65] HUANG J S, KELZENBERG M D, ESPINET-GONZÁLEZ P, et al. Effects of electron and proton radiation on perovskite solar cells for space solar power application[C]//Proceedings of the IEEE 44th Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2017: 1248-1252. [66] YAMAGUCHI M. Radiation-resistant solar cells for space use[J]. Solar Energy Materials and Solar Cells, 2001, 68(1): 31-53. doi: 10.1016/S0927-0248(00)00344-5 [67] MIYAZAWA Y, IKEGAMI M, CHEN H W, et al. Tolerance of perovskite solar cell to high-energy particle irradiations in space environment[J]. iScience, 2018, 2: 148-155. doi: 10.1016/j.isci.2018.03.020 [68] SONG Z N, LI C W, CHEN C, et al. High remaining factors in the photovoltaic performance of perovskite solar cells after high-fluence electron beam irradiations[J]. Journal of Physical Chemistry C, 2020, 124(2): 1330-1336. doi: 10.1021/acs.jpcc.9b11483 [69] IMAIZUMI M, NAKAMURA T, TAKAMOTO T, et al. Radiation degradation characteristics of component subcells in inverted metamorphic triple-junction solar cells irradiated with electrons and protons[J]. Progress in Photovoltaics, 2017, 25(2): 161-174. doi: 10.1002/pip.2840 [70] MOTTL D, NYMMIK R. Errors in the particle flux measurement data relevant to solar energetic particle spectra [J]. Advances in Space Research, 2003, 32(11): 2349-2353. [71] NEITZERT H C, SPINILLO P, BELLONE S, et al. Investigation of the damage as induced by 1.7 MeV protons in an amorphous/crystalline silicon heterojunction solar cell[J]. Solar Energy Materials and Solar Cells, 2004, 83(4): 435-446. doi: 10.1016/j.solmat.2004.01.035 [72] LANG F, NICKEL N H, BUNDESMANN J, et al. Radiation hardness and self-healing of perovskite solar cells[J]. Advanced Materials, 2016, 28(39): 8726-8731. doi: 10.1002/adma.201603326 [73] LANG F, JOŠT M, BUNDESMANN J, et al. Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation[J]. Energy & Environmental Science, 2019, 12(5): 1634-1647. [74] LUO Z Y, CHEN T B, AHYI A C, et al. Proton radiation effects in 4h-sic diodes and mos capacitors[J]. IEEE Transactions on Nuclear Science, 2004, 51(6): 3748-3752. doi: 10.1109/TNS.2004.839254 [75] MARKVART T. Radiation-damage in solar-cells[J]. Journal of Materials Science-Materials in Electronics, 1990, 1(1): 1-12. doi: 10.1007/BF00716008 [76] BARBE J, HUGHES D, WEI Z F, et al. Radiation hardness of perovskite solar cells based on aluminum-doped zinc oxide electrode under proton irradiation[J]. Solar RRL, 2019, 3(12): 1900219. doi: 10.1002/solr.201900219 [77] CARDINALETTI I, VANGERVEN T, NAGELS S, et al. Organic and perovskite solar cells for space applications[J]. Solar Energy Materials and Solar Cells, 2018, 182: 121-127. doi: 10.1016/j.solmat.2018.03.024 [78] TU Y, XU G, YANG X, et al. Mixed-cation perovskite solar cells in space [J]. Science China Physics, Mechanics & Astronomy, 2019, 62: 1-4. [79] REB L K, BÖHMER M, PREDESCHLY B, et al. Perovskite and organic solar cells on a rocket flight[J]. Joule, 2020, 4(9): 1880-1892. doi: 10.1016/j.joule.2020.07.004 [80] National Renewable Energy Laboratory. Space mission tests nrel perovskite solar cells [EB/OL]. (2021-08-27)[2023-04-10]. http://www.nrel.gov/news/features/2021/space-mission-tests-nrel-perovskite-solar-cells.html. [81] NASA. 10-month voyage proves solar cell material survives, thrives in space [EB/OL]. (2020-03-07)[2023-04-10]. http://www.nasa.gov/general/10-month-voyage-proves-solar-cell-material-survives-thrives-in-space.html. [82] WANG H, JIANG X, CAO Y, et al. The first record of diurnal performance evolution of perovskite solar cells in near space[J]. Advanced Energy Materials, 2022, 13(2): 202202643. [83] MCMILLON-BROWN L, LUTHER J M, PESHEK T J. What would it take to manufacture perovskite solar cells in space?[J]. ACS Energy Letters, 2022, 7(3): 1040-1042. doi: 10.1021/acsenergylett.2c00276 -


下载: