留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合开关器件的可重构电池组串并联拓扑结构

叶泽雨 尹靖元 张桐硕 师长立 韦统振

叶泽雨,尹靖元,张桐硕,等. 基于混合开关器件的可重构电池组串并联拓扑结构[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2674-2684 doi: 10.13700/j.bh.1001-5965.2022.0855
引用本文: 叶泽雨,尹靖元,张桐硕,等. 基于混合开关器件的可重构电池组串并联拓扑结构[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2674-2684 doi: 10.13700/j.bh.1001-5965.2022.0855
YE Z Y,YIN J Y,ZHANG T S,et al. Series-parallel topology of reconfigurable battery pack based on hybrid switching devices[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2674-2684 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0855
Citation: YE Z Y,YIN J Y,ZHANG T S,et al. Series-parallel topology of reconfigurable battery pack based on hybrid switching devices[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2674-2684 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0855

基于混合开关器件的可重构电池组串并联拓扑结构

doi: 10.13700/j.bh.1001-5965.2022.0855
基金项目: 

国家重点研发计划(2021YFB2601602); 中国科学院电工研究所科研基金(E155610201);中国科学院青年创新促进会(2020144)

详细信息
    通讯作者:

    E-mail:yinjingyuan@mail.iee.ac.cn

  • 中图分类号: V242;TM912

Series-parallel topology of reconfigurable battery pack based on hybrid switching devices

Funds: 

National Key Research and Development Project of China (2021YFB2601602); Scientific Research Fund of Institute of Electrical Engineering, CAS (E155610201); Youth Innovation Promotion Association, CAS (2020144)

More Information
  • 摘要:

    临近空间飞行器储能电池组需要将大量电池单体串并联连接,部分单体电池故障将严重影响电池组性能并可能导致故障蔓延。通过在电池组中配置电力电子开关可以使电池单体或部分单体可重构,具备故障电池隔离及电池间容量均衡等功能。为实现飞行器的电源高效、高可靠度,提出一种基于混合开关的可重构电池组。使用响应时间快的电力电子器件隔离电池串,进一步使用机械继电器控制单体电池的投入和切除;提出混合开关器件结构下的电池切换策略,利用二极管辅助的母线电压调节方法;搭建10串2并的混合开关可重构电池组样机,并进行电池组放电阶段的重构实验。实验结果表明:所提结构可以通过开关器件实现电池串联均衡、故障隔离和母线电压调节等多种功能。损耗、可靠性和质量分析表明:所提结构少量系统损耗和质量即可以实现对电池单体控制,提升电池组的可靠度。

     

  • 图 1  不同的可重构电池组结构[20-21]

    Figure 1.  Structure of different reconfigurable battery packs[20-21]

    图 2  开关连接方式

    Figure 2.  Connection mode of switch

    图 3  混合开关器件可重构电池组拓扑架构

    Figure 3.  Reconfigurable battery pack topology architecture based on hybrid switching device

    图 4  电池单体投入/切除过程

    Figure 4.  Insertion and removal process of a battery cell

    图 5  电池组电压调节过程

    Figure 5.  Battery pack voltage regulation process

    图 6  串并联电池组等效模型

    Figure 6.  Equivalent model of a series-parallel connected battery pack

    图 7  实验测试平台

    Figure 7.  Experimental test platform

    图 8  容量均衡切换过程实验

    Figure 8.  Capacity balancing switching process experiment

    图 9  电池单体故障重构实验

    Figure 9.  Fault reconstruction experiment of battery cell

    图 10  电池组电压调节实验

    Figure 10.  Voltage regulation experiment of battery pack

    图 11  电池串短路保护实验

    Figure 11.  Experiment of battery string short-circuit protection

    图 12  串联电池组可靠度模型

    Figure 12.  Reliability model of battery packs connected in series

    图 13  本文结构的可靠度模型

    Figure 13.  Reliability model of the proposed structure

    图 14  不同串联节数和冗余电池数量的电池组可靠度

    Figure 14.  Reliability of battery pack with different number of series-connected cells and redundant cells

    图 15  电池组可靠度和系统质量的关系

    Figure 15.  Relationship between reliability of battery pack and system weight

    表  1  不同可重构电池组的器件使用和损耗分析

    Table  1.   Analysis of device usage and loss of different reconfigurable battery packs

    结构名称MOSFET
    数量
    机械开关
    数量
    损耗
    纯固态结构
    (四开关式)
    4n02nl1
    纯固态结构
    (两开关式)
    2n+20(n+2)l1
    常规混合式结构4n2nnl3
    本文混合式结构2n2l1+ nl3
    下载: 导出CSV

    表  2  不同切换过程对比

    Table  2.   Comparison of different switching processes

    切换方式注意事项或参数要求
    同时切换10%的电压跌落需要5 mF母线电容
    分步切换瞬时短路电流超过50 A
    投入限流电阻切换将电流差限制在6 A以内需要1 Ω电阻,
    电阻功率为9 W
    投入二极管切换切换过程电池承受2倍额定放电电流
    下载: 导出CSV
  • [1] 高阳, 徐国宁, 王生, 等. 平流层飞艇能源系统建模与小信号稳定性分析[J]. 太阳能学报, 2022, 43(8): 50-57.

    GAO Y, XU G N, WANG S, et al. Modeling and small signal stability analysis of stratospheric airship energy system[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 50-57(in Chinese).
    [2] 刘乾石, 徐国宁, 李兆杰, 等. 长航时高空科学气球能量平衡分析与优化[J]. 太阳能学报, 2021, 42(5): 276-285.

    LIU Q S, XU G N, LI Z J, et al. Energy balance analysis and optimization of long-tern high altitude scientific balloon[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 276-285(in Chinese).
    [3] 赵新路, 杨希祥, 侯中喜, 等. 平流层飞艇再生能源能量平衡的关键技术分析研究[J]. 科学技术与工程, 2016, 16(30): 85-91. doi: 10.3969/j.issn.1671-1815.2016.30.014

    ZHAO X L, YANG X X, HOU Z X, et al. Pivotal technology analysis of stratospheric airship based on energy balance in regenerative energy system[J]. Science Technology and Engineering, 2016, 16(30): 85-91(in Chinese). doi: 10.3969/j.issn.1671-1815.2016.30.014
    [4] 林晓辉, 陆翀, 张兴浩, 等. 临近空间飞艇电源系统新型拓扑结构研究[J]. 航天器工程, 2014, 23(6): 41-46. doi: 10.3969/j.issn.1673-8748.2014.06.008

    LIN X H, LU C, ZHANG X H, et al. Study of new topology of electrical power system used on near space airship[J]. Spacecraft Engineering, 2014, 23(6): 41-46(in Chinese). doi: 10.3969/j.issn.1673-8748.2014.06.008
    [5] XU J, MEI X S, WANG J P. A high power low-cost balancing system for battery strings[J]. Energy Procedia, 2019, 158: 2948-2953. doi: 10.1016/j.egypro.2019.01.956
    [6] KIM M Y, KIM C H, KIM J H, et al. A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 3989-3999. doi: 10.1109/TIE.2013.2288195
    [7] 林鸿业, 康龙云, 卢楚生, 等. 基于电感储能的新型锂离子电池组C2C均衡电路[J]. 电力电子技术, 2020, 54(7): 39-41. doi: 10.3969/j.issn.1000-100X.2020.07.011

    LIN H Y, KANG L Y, LU C S, et al. A novel lithium-ion battery pack C2C equalization circuit based on inductive energy storage[J]. Power Electronics, 2020, 54(7): 39-41(in Chinese). doi: 10.3969/j.issn.1000-100X.2020.07.011
    [8] 叶凌云, 朱幸, 黄添添, 等. 变压器分立的动力电池组主动均衡技术研究[J]. 仪器仪表学报, 2018, 39(7): 83-91.

    YE L Y, ZHU X, HUANG T T, et al. Research on active balance technology of power battery pack based on multi-transformer method[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 83-91(in Chinese).
    [9] 张宇, 白伟, 史砚磊, 等. 基于热失控风险指数的锂电池安全评价方法[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(5): 912-918.

    ZHANG Y, BAI W, SHI Y L, et al. Evaluation method of lithium battery safety based on thermal runaway risk index[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 912-918(in Chinese).
    [10] 王子毅, 朱承治, 周杨林, 等. 基于动态可重构电池网络的OCV-SOC在线估计[J]. 中国电机工程学报, 2022, 42(8): 2919-2929.

    WANG Z Y, ZHU C Z, ZHOU Y L, et al. OCV-SOC estimation based on dynamic reconfigurable battery network[J]. Proceedings of the CSEE, 2022, 42(8): 2919-2929(in Chinese).
    [11] MANENTI A, ABBA A, MERATI A, et al. A new BMS architecture based on cell redundancy[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4314-4322. doi: 10.1109/TIE.2010.2095398
    [12] KERSTEN A, KUDER M, HAN W J, et al. Online and on-board battery impedance estimation of battery cells, modules or packs in a reconfigurable battery system or multilevel inverter[C]//Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2020: 1884-1891.
    [13] KIM T, QIAO W, QU L Y. Power electronics-enabled self-X multicell batteries: a design toward smart batteries[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4723-4733. doi: 10.1109/TPEL.2012.2183618
    [14] CI S, ZHANG J C, SHARIF H, et al. A novel design of adaptive reconfigurable multicell battery for power-aware embedded networked sensing systems[C]//Proceedings of the IEEE Global Telecommunications Conference. Piscataway: IEEE Press, 2007: 1043-1047.
    [15] GUNLU G. Dynamically reconfigurable independent cellular switching circuits for managing battery modules[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 194-201. doi: 10.1109/TEC.2016.2616190
    [16] 廖力, 纪锋, 吴铁洲, 等. 采用附加电源的均衡电路与容量自均衡方法[J]. 电测与仪表, 2020, 57(7): 48-53.

    LIAO L, JI F, WU T Z, et al. Equalization circuit with additional power supply and capacity self-balancing method[J]. Electrical Measurement & Instrumentation, 2020, 57(7): 48-53(in Chinese).
    [17] 王友仁, 黄薛, 耿星, 等. 容错航空蓄电池电源及其均衡管理[J]. 航空学报, 2018, 39(5): 321722. doi: 10.7527/S1000-6893.2018.21722

    WANG Y R, HUANG X, GENG X, et al. Fault-tolerant battery power supply for aircraft and its active equalization management[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 321722(in Chinese). doi: 10.7527/S1000-6893.2018.21722
    [18] JI F, LIAO L, WU T Z, et al. Self-reconfiguration batteries with stable voltage during the full cycle without the DC-DC converter[J]. Journal of Energy Storage, 2020, 28: 101213. doi: 10.1016/j.est.2020.101213
    [19] CI S, LIN N, WU D L. Reconfigurable battery techniques and systems: a survey[J]. IEEE Access, 2016, 4: 1175-1189. doi: 10.1109/ACCESS.2016.2545338
    [20] HAN W J, WIK T, KERSTEN A, et al. Next-generation battery management systems: dynamic reconfiguration[J]. IEEE Industrial Electronics Magazine, 2020, 14(4): 20-31. doi: 10.1109/MIE.2020.3002486
    [21] CUI H Y, WEI Z B, HE H W, et al. Novel reconfigurable topology-enabled hierarchical equalization of lithium-ion battery for maximum capacity utilization[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 396-406. doi: 10.1109/TIE.2022.3152005
    [22] HUANG X R, SUI X, STROE D I, et al. A review of management architectures and balancing strategies in smart batteries[C]//Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2019: 5909-5914.
    [23] TASHAKOR N, ARABSALMANABADI B, NASERI F, et al. Low-cost parameter estimation approach for modular converters and reconfigurable battery systems using dual Kalman filter[J]. IEEE Transactions on Power Electronics, 2022, 37(6): 6323-6334. doi: 10.1109/TPEL.2021.3137879
    [24] 王莹, 严晓, 林文魁, 等. 具备冗余单元的电池组放电效率研究[J]. 电源技术, 2018, 42(12): 1832-1834. doi: 10.3969/j.issn.1002-087X.2018.12.021

    WANG Y, YAN X, LIN W K, et al. Research on discharge efficiency of battery pack with redundant cells[J]. Chinese Journal of Power Sources, 2018, 42(12): 1832-1834(in Chinese). doi: 10.3969/j.issn.1002-087X.2018.12.021
    [25] 李结胜. 高效高精度电池管理系统的设计和开发[D]. 武汉: 华中科技大学, 2019.

    LI J S. Design and development of high efficiency and high precision battery management system[D]. Wuhan: Huazhong University of Science and Technology, 2019(in Chinese).
    [26] 叶泽雨, 尹靖元, 师长立, 等. 基于多智能体强化学习的可重构电池组串并联均衡方法[J]. 实验技术与管理, 2022, 39(6): 68-72.

    YE Z Y, YIN J Y, SHI C L, et al. Reconfigurable battery series and parallel equalization method based on multi agent reinforcement learning[J]. Experimental Technology and Management, 2022, 39(6): 68-72(in Chinese).
    [27] 中国人民解放军总装备部. 电子设备可靠性预计手册: GJB/Z 299C—2006[S]. 北京: 中国人民解放军总装备部, 2006.

    General Armaments Department of the People's Libe. Reliability prediction handbook for electronicequipment: GJB/Z 299C—2006[S]. Beijing: General Armaments Department of the People's Libe , 2006(in Chinese).
    [28] 程林, 万宇翔, 周杨林, 等. MMC型电力电子变压器运行可靠性分析及其应用[J]. 电网技术, 2022, 46(3): 1073-1083.

    CHENG L, WAN Y X, ZHOU Y L, et al. Operational reliability analysis and application of MMC power electronic transformers[J]. Power System Technology, 2022, 46(3): 1073-1083(in Chinese).
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  36
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-30
  • 录用日期:  2023-02-23
  • 网络出版日期:  2024-11-07
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答