Series-parallel topology of reconfigurable battery pack based on hybrid switching devices
-
摘要:
临近空间飞行器储能电池组需要将大量电池单体串并联连接,部分单体电池故障将严重影响电池组性能并可能导致故障蔓延。通过在电池组中配置电力电子开关可以使电池单体或部分单体可重构,具备故障电池隔离及电池间容量均衡等功能。为实现飞行器的电源高效、高可靠度,提出一种基于混合开关的可重构电池组。使用响应时间快的电力电子器件隔离电池串,进一步使用机械继电器控制单体电池的投入和切除;提出混合开关器件结构下的电池切换策略,利用二极管辅助的母线电压调节方法;搭建10串2并的混合开关可重构电池组样机,并进行电池组放电阶段的重构实验。实验结果表明:所提结构可以通过开关器件实现电池串联均衡、故障隔离和母线电压调节等多种功能。损耗、可靠性和质量分析表明:所提结构少量系统损耗和质量即可以实现对电池单体控制,提升电池组的可靠度。
Abstract:Near-space vehicles require battery packs composed of a large number of cells connected in series and parallel. The failure of battery cells can seriously affect the performance of the battery pack and may cause the propagation of the failure. By configuring power electronic switches in the battery pack, cells or certain sections of them can be reconfigured, enabling fault battery isolation and capacity balance between batteries. In order to achieve high efficiency and reliability of power supply, a reconfigurable battery pack based on a hybrid switch was proposed. First, fast-response power electronic devices were used to isolate the battery string, and mechanical relays were used to control the insert and removal of a battery cell. Then, a battery switching strategy based on a hybrid switching device structure was proposed, incorporating a diode-assisted bus voltage regulation method. At last, a prototype of a hybrid-switch-based reconfigurable battery pack with 10-series, 2-parallel connections was built, and a reconstruction experiment under discharge conditions was carried out. The experimental results show that the proposed structure can realize battery balancing, fault isolation, and bus voltage regulation through switching devices. Analyses of loss, reliability, and weight show that the structure can manage cells with minimal additional system loss and weight, improving overall battery pack reliability.
-
表 1 不同可重构电池组的器件使用和损耗分析
Table 1. Analysis of device usage and loss of different reconfigurable battery packs
结构名称 MOSFET
数量机械开关
数量损耗 纯固态结构
(四开关式)4n 0 2nl1 纯固态结构
(两开关式)2n+2 0 (n+2)l1 常规混合式结构 4n 2n nl3 本文混合式结构 2 n 2l1+ nl3 表 2 不同切换过程对比
Table 2. Comparison of different switching processes
切换方式 注意事项或参数要求 同时切换 10%的电压跌落需要5 mF母线电容 分步切换 瞬时短路电流超过50 A 投入限流电阻切换 将电流差限制在6 A以内需要1 Ω电阻,
电阻功率为9 W投入二极管切换 切换过程电池承受2倍额定放电电流 -
[1] 高阳, 徐国宁, 王生, 等. 平流层飞艇能源系统建模与小信号稳定性分析[J]. 太阳能学报, 2022, 43(8): 50-57.GAO Y, XU G N, WANG S, et al. Modeling and small signal stability analysis of stratospheric airship energy system[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 50-57(in Chinese). [2] 刘乾石, 徐国宁, 李兆杰, 等. 长航时高空科学气球能量平衡分析与优化[J]. 太阳能学报, 2021, 42(5): 276-285.LIU Q S, XU G N, LI Z J, et al. Energy balance analysis and optimization of long-tern high altitude scientific balloon[J]. Acta Energiae Solaris Sinica, 2021, 42(5): 276-285(in Chinese). [3] 赵新路, 杨希祥, 侯中喜, 等. 平流层飞艇再生能源能量平衡的关键技术分析研究[J]. 科学技术与工程, 2016, 16(30): 85-91. doi: 10.3969/j.issn.1671-1815.2016.30.014ZHAO X L, YANG X X, HOU Z X, et al. Pivotal technology analysis of stratospheric airship based on energy balance in regenerative energy system[J]. Science Technology and Engineering, 2016, 16(30): 85-91(in Chinese). doi: 10.3969/j.issn.1671-1815.2016.30.014 [4] 林晓辉, 陆翀, 张兴浩, 等. 临近空间飞艇电源系统新型拓扑结构研究[J]. 航天器工程, 2014, 23(6): 41-46. doi: 10.3969/j.issn.1673-8748.2014.06.008LIN X H, LU C, ZHANG X H, et al. Study of new topology of electrical power system used on near space airship[J]. Spacecraft Engineering, 2014, 23(6): 41-46(in Chinese). doi: 10.3969/j.issn.1673-8748.2014.06.008 [5] XU J, MEI X S, WANG J P. A high power low-cost balancing system for battery strings[J]. Energy Procedia, 2019, 158: 2948-2953. doi: 10.1016/j.egypro.2019.01.956 [6] KIM M Y, KIM C H, KIM J H, et al. A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8): 3989-3999. doi: 10.1109/TIE.2013.2288195 [7] 林鸿业, 康龙云, 卢楚生, 等. 基于电感储能的新型锂离子电池组C2C均衡电路[J]. 电力电子技术, 2020, 54(7): 39-41. doi: 10.3969/j.issn.1000-100X.2020.07.011LIN H Y, KANG L Y, LU C S, et al. A novel lithium-ion battery pack C2C equalization circuit based on inductive energy storage[J]. Power Electronics, 2020, 54(7): 39-41(in Chinese). doi: 10.3969/j.issn.1000-100X.2020.07.011 [8] 叶凌云, 朱幸, 黄添添, 等. 变压器分立的动力电池组主动均衡技术研究[J]. 仪器仪表学报, 2018, 39(7): 83-91.YE L Y, ZHU X, HUANG T T, et al. Research on active balance technology of power battery pack based on multi-transformer method[J]. Chinese Journal of Scientific Instrument, 2018, 39(7): 83-91(in Chinese). [9] 张宇, 白伟, 史砚磊, 等. 基于热失控风险指数的锂电池安全评价方法[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(5): 912-918.ZHANG Y, BAI W, SHI Y L, et al. Evaluation method of lithium battery safety based on thermal runaway risk index[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 912-918(in Chinese). [10] 王子毅, 朱承治, 周杨林, 等. 基于动态可重构电池网络的OCV-SOC在线估计[J]. 中国电机工程学报, 2022, 42(8): 2919-2929.WANG Z Y, ZHU C Z, ZHOU Y L, et al. OCV-SOC estimation based on dynamic reconfigurable battery network[J]. Proceedings of the CSEE, 2022, 42(8): 2919-2929(in Chinese). [11] MANENTI A, ABBA A, MERATI A, et al. A new BMS architecture based on cell redundancy[J]. IEEE Transactions on Industrial Electronics, 2011, 58(9): 4314-4322. doi: 10.1109/TIE.2010.2095398 [12] KERSTEN A, KUDER M, HAN W J, et al. Online and on-board battery impedance estimation of battery cells, modules or packs in a reconfigurable battery system or multilevel inverter[C]//Proceedings of the 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2020: 1884-1891. [13] KIM T, QIAO W, QU L Y. Power electronics-enabled self-X multicell batteries: a design toward smart batteries[J]. IEEE Transactions on Power Electronics, 2012, 27(11): 4723-4733. doi: 10.1109/TPEL.2012.2183618 [14] CI S, ZHANG J C, SHARIF H, et al. A novel design of adaptive reconfigurable multicell battery for power-aware embedded networked sensing systems[C]//Proceedings of the IEEE Global Telecommunications Conference. Piscataway: IEEE Press, 2007: 1043-1047. [15] GUNLU G. Dynamically reconfigurable independent cellular switching circuits for managing battery modules[J]. IEEE Transactions on Energy Conversion, 2017, 32(1): 194-201. doi: 10.1109/TEC.2016.2616190 [16] 廖力, 纪锋, 吴铁洲, 等. 采用附加电源的均衡电路与容量自均衡方法[J]. 电测与仪表, 2020, 57(7): 48-53.LIAO L, JI F, WU T Z, et al. Equalization circuit with additional power supply and capacity self-balancing method[J]. Electrical Measurement & Instrumentation, 2020, 57(7): 48-53(in Chinese). [17] 王友仁, 黄薛, 耿星, 等. 容错航空蓄电池电源及其均衡管理[J]. 航空学报, 2018, 39(5): 321722. doi: 10.7527/S1000-6893.2018.21722WANG Y R, HUANG X, GENG X, et al. Fault-tolerant battery power supply for aircraft and its active equalization management[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 321722(in Chinese). doi: 10.7527/S1000-6893.2018.21722 [18] JI F, LIAO L, WU T Z, et al. Self-reconfiguration batteries with stable voltage during the full cycle without the DC-DC converter[J]. Journal of Energy Storage, 2020, 28: 101213. doi: 10.1016/j.est.2020.101213 [19] CI S, LIN N, WU D L. Reconfigurable battery techniques and systems: a survey[J]. IEEE Access, 2016, 4: 1175-1189. doi: 10.1109/ACCESS.2016.2545338 [20] HAN W J, WIK T, KERSTEN A, et al. Next-generation battery management systems: dynamic reconfiguration[J]. IEEE Industrial Electronics Magazine, 2020, 14(4): 20-31. doi: 10.1109/MIE.2020.3002486 [21] CUI H Y, WEI Z B, HE H W, et al. Novel reconfigurable topology-enabled hierarchical equalization of lithium-ion battery for maximum capacity utilization[J]. IEEE Transactions on Industrial Electronics, 2023, 70(1): 396-406. doi: 10.1109/TIE.2022.3152005 [22] HUANG X R, SUI X, STROE D I, et al. A review of management architectures and balancing strategies in smart batteries[C]//Proceedings of the 45th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2019: 5909-5914. [23] TASHAKOR N, ARABSALMANABADI B, NASERI F, et al. Low-cost parameter estimation approach for modular converters and reconfigurable battery systems using dual Kalman filter[J]. IEEE Transactions on Power Electronics, 2022, 37(6): 6323-6334. doi: 10.1109/TPEL.2021.3137879 [24] 王莹, 严晓, 林文魁, 等. 具备冗余单元的电池组放电效率研究[J]. 电源技术, 2018, 42(12): 1832-1834. doi: 10.3969/j.issn.1002-087X.2018.12.021WANG Y, YAN X, LIN W K, et al. Research on discharge efficiency of battery pack with redundant cells[J]. Chinese Journal of Power Sources, 2018, 42(12): 1832-1834(in Chinese). doi: 10.3969/j.issn.1002-087X.2018.12.021 [25] 李结胜. 高效高精度电池管理系统的设计和开发[D]. 武汉: 华中科技大学, 2019.LI J S. Design and development of high efficiency and high precision battery management system[D]. Wuhan: Huazhong University of Science and Technology, 2019(in Chinese). [26] 叶泽雨, 尹靖元, 师长立, 等. 基于多智能体强化学习的可重构电池组串并联均衡方法[J]. 实验技术与管理, 2022, 39(6): 68-72.YE Z Y, YIN J Y, SHI C L, et al. Reconfigurable battery series and parallel equalization method based on multi agent reinforcement learning[J]. Experimental Technology and Management, 2022, 39(6): 68-72(in Chinese). [27] 中国人民解放军总装备部. 电子设备可靠性预计手册: GJB/Z 299C—2006[S]. 北京: 中国人民解放军总装备部, 2006.General Armaments Department of the People's Libe. Reliability prediction handbook for electronicequipment: GJB/Z 299C—2006[S]. Beijing: General Armaments Department of the People's Libe , 2006(in Chinese). [28] 程林, 万宇翔, 周杨林, 等. MMC型电力电子变压器运行可靠性分析及其应用[J]. 电网技术, 2022, 46(3): 1073-1083.CHENG L, WAN Y X, ZHOU Y L, et al. Operational reliability analysis and application of MMC power electronic transformers[J]. Power System Technology, 2022, 46(3): 1073-1083(in Chinese). -


下载: