留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

临近空间太阳能无人机巡航剖面各阶段能量影响

邓小龙 高显忠 杨民生 王玉杰 朱炳杰

邓小龙,高显忠,杨民生,等. 临近空间太阳能无人机巡航剖面各阶段能量影响[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2615-2623 doi: 10.13700/j.bh.1001-5965.2022.0789
引用本文: 邓小龙,高显忠,杨民生,等. 临近空间太阳能无人机巡航剖面各阶段能量影响[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2615-2623 doi: 10.13700/j.bh.1001-5965.2022.0789
DENG X L,GAO X Z,YANG M S,et al. Energy influence of stages in cruise profile for near space solar powered unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2615-2623 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0789
Citation: DENG X L,GAO X Z,YANG M S,et al. Energy influence of stages in cruise profile for near space solar powered unmanned aerial vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2615-2623 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0789

临近空间太阳能无人机巡航剖面各阶段能量影响

doi: 10.13700/j.bh.1001-5965.2022.0789
基金项目: 

国家自然科学基金(61903369,52172410)

详细信息
    通讯作者:

    E-mail:xiaolong.deng@outlook.com

  • 中图分类号: V221

Energy influence of stages in cruise profile for near space solar powered unmanned aerial vehicles

Funds: 

National Natural Science Foundation of China (61903369,52172410)

More Information
  • 摘要:

    昼夜能量平衡是临近空间太阳能无人机(UAV)具备高空长航时飞行能力的重要前提之一,设计合理的巡航飞行剖面是实现该目标的关键。基于此,通过分析太阳能无人机在巡航飞行剖面中滑翔、爬升、日间平飞和夜间平飞等各阶段的能源供应模式,建立发电、储能、耗能和动力学的模型,重点讨论巡航飞行剖面各阶段工作特性对能源循环的影响。研究结果表明:滑翔和爬升策略对于储能电池的最低电量影响较小;提高日间巡航高度可增加储能电池最低电量,且日间巡航结束时间会影响储能电池最低电量;降低夜间巡航高度可大幅增加储能电池的最低电量。

     

  • 图 1  临近空间太阳能无人机能源供应模式

    Figure 1.  Energy supplying modes of near-space solar powered unmanned aerial vehicles

    图 2  跨昼夜飞行阶段典型巡航飞行剖面与能源特性

    Figure 2.  Typical cruise flight profiles and energy property of diurnal endurance flight stages

    图 3  2种滑翔策略的功率特性示意图

    Figure 3.  Schematic of power characteristics of two gliding strategies

    图 4  2种爬升策略的功率特性示意图

    Figure 4.  Schematic of power characteristics of two climbing strategies

    图 5  巡航需用功率随高度变化

    Figure 5.  Power required for cruising varies with altitude

    图 6  Zephyr S太阳能无人机示意图

    Figure 6.  Schematic diagram of Zephyr S solar powered unmanned aerial vehicles

    图 7  太阳能无人机每日发电情况

    Figure 7.  Daily energy generation in solar powered unmanned aerial vehicles

    图 8  典型工作剖面的功率

    Figure 8.  Powers of typical flight profiles

    图 9  典型工作剖面的储能电池能量

    Figure 9.  State of battery energies for typical flight profiles

    图 10  2种典型滑翔策略的功率特性

    Figure 10.  Power properties of two typical glide strategies

    图 11  2种典型滑翔策略的能量

    Figure 11.  State of battery energies for two typical glide strategies

    图 12  2种典型爬升策略的功率特性

    Figure 12.  Power properties of two typical climb strategies

    图 13  2种典型爬升策略的能量

    Figure 13.  State of battery energies for two typical climb strategies

    图 14  不同日间巡航高度时储能电池能量

    Figure 14.  State of battery energies for different daily cruise altitudes

    图 15  不同夜间巡航高度时储能电池能量

    Figure 15.  State of battery energies for different night cruise altitudes

    图 16  巡航结束时刻对储能电池最低能量影响

    Figure 16.  Effect of cruise end time on minimum battery energy

    表  1  仿真分析使用的参数

    Table  1.   Parameters used in simulation analysis

    参数 数值
    总质量/kg 62
    载荷质量/kg 5
    储能电池能量密度/(Wh·kg−1) 400
    储能电池放电深度/% 90
    翼展/m 25
    太阳电池面积/m2 15
    太阳电池比功率/(W·kg−1) 1000
    太阳电池功率密度/(W·m−2) 250
    航电与载荷功耗/W 50
    日间巡航高度/m 21000
    夜间巡航高度/m 16000
    下载: 导出CSV
  • [1] 侯中喜, 高显忠, 郭正, 等. 太阳能飞机: 高空长航时飞行关键问题[M]. 北京: 科学出版社, 2021.

    HOU Z X, GAO X Z, GUO Z, et al. Solar-powered aircraft[M]. Beijing: Science Press, 2021(in Chinese).
    [2] XU Y M, ZHU W Y, LI J, et al. Improvement of endurance performance for high-altitude solar-powered airships: a review[J]. Acta Astronautica, 2020, 167: 245-259. doi: 10.1016/j.actaastro.2019.11.021
    [3] 李晨飞, 姜鲁华. 临近空间长航时太阳能无人机研究现状及关键技术[J]. 中国基础科学, 2018, 20(2): 22-31. doi: 10.3969/j.issn.1009-2412.2018.02.004

    LI C F, JIANG L H. Research status and key technology of near space long endurance high altitude solar-powered unmanned air vehicle[J]. China Basic Science, 2018, 20(2): 22-31(in Chinese). doi: 10.3969/j.issn.1009-2412.2018.02.004
    [4] 赵炜, 赵钱, 黄江流, 等. 临近空间太阳能无人机在现代战争中的应用[J]. 空天防御, 2020, 3(2): 85-90.

    ZHAO W, ZHAO Q, HUANG J L, et al. Application of near space solar powered UAV in modern war[J]. Air & Space Defense, 2020, 3(2): 85-90(in Chinese).
    [5] 石文, 李广佳, 仪志胜, 等. 临近空间太阳能无人机应用现状与展望[J]. 空天技术, 2022(1): 83-90.

    SHI W, LI G J, YI Z S, et al. Current status and prospect of solar-powered unmanned aerial vehicle application in near space[J]. Aerospace Technology, 2022(1): 83-90(in Chinese).
    [6] 高显忠, 邓小龙, 王玉杰, 等. 临近空间太阳能飞机能量最优飞行航迹规划方法展望[J]. 航空学报, 2023, 44(8): 027265.

    GAO X Z, DENG X L, WANG Y J, et al. General planning method for energy optimal flight path of solar-powered aircraft in near space[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 027265(in Chinese).
    [7] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述[J]. 航空学报, 2020, 41(3): 623418. doi: 10.7527/S1000-6893.2019.23418

    MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-long-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418(in Chinese). doi: 10.7527/S1000-6893.2019.23418
    [8] GAO X Z, HOU Z X, GUO Z, et al. Reviews of methods to extract and store energy for solar-powered aircraft[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 96-108. doi: 10.1016/j.rser.2014.11.025
    [9] GAO X Z, HOU Z X, GUO Z, et al. Research on characteristics of gravitational gliding for high-altitude solar-powered unmanned aerial vehicles[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(12): 1911-1923. doi: 10.1177/0954410012464838
    [10] RONEY J A. Statistical wind analysis for near-space applications[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(13): 1485-1501. doi: 10.1016/j.jastp.2007.05.005
    [11] ARNE V, VEGA H, CHRISTIAN W, et al. Results from loads and aeroelastic analyses of a high altitude, long endurance, solar electric aircraft[J]. Journal of Aeroelasticity and Structural Dynamics, 2022, 9(1): 1-22.
    [12] 吴健发, 王宏伦, 黄宇. 大跨时空任务背景下的太阳能无人机任务规划技术研究进展[J]. 航空学报, 2020, 41(3): 623414.

    WU J F, WANG H L, HUANG Y. Research development of solar powered UAV mission planning technology in large-scale time and space spans[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623414(in Chinese).
    [13] KLESH A T, KABAMBA P T. Solar-powered aircraft: energy-optimal path planning and perpetual endurance[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1320-1329. doi: 10.2514/1.40139
    [14] ZHU W Y, XU Y M, LI J, et al. Performance analysis of rotatable energy system of high-altitude airships in real wind field[J]. Aerospace Science and Technology, 2020, 98: 105689. doi: 10.1016/j.ast.2020.105689
    [15] CRAIG L N, MARK D G, LISA L K, et al. High altitude long endurance UAV analysis of alternatives and technology requirements development[R]. Washington, D. C. : NASA, 2007.
    [16] LEE J S, YU K H. Optimal path planning of solar-powered UAV using gravitational potential energy[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(3): 1442-1451. doi: 10.1109/TAES.2017.2671522
    [17] 仲维国, 郭有光, 张凯. 太阳能飞机循环飞行的高度剖面能量策略[J]. 航空学报, 2020, 41(3): 623429.

    ZHONG W G, GUO Y G, ZHANG K. Energy strategy on altitude profile for cycle flight of solar powered aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623429(in Chinese).
    [18] 张德虎, 张健, 李军府. 太阳能飞机能量平衡建模[J]. 航空学报, 2016, 37(增刊1): 16-23.

    ZHANG D H, ZHANG J, LI J F. Energy balance modeling for solar powered aircrafts[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(Sup 1): 16-23(in Chinese).
    [19] NI W J, WU D, MA X P. Energy-optimal flight strategy for solar-powered aircraft using reinforcement learning with discrete actions[J]. IEEE Access, 2021, 9: 95317-95334. doi: 10.1109/ACCESS.2021.3095224
    [20] 杨炳尉. 标准大气参数的公式表示[J]. 宇航学报, 1983, 4(1): 83-86.

    YANG B W. Formulization of standard atmospheric parameters[J]. Journal of Astronautics, 1983, 4(1): 83-86(in Chinese).
    [21] 杨宇丹, 朱炳杰, 郭正, 等. 太阳能无人机能源系统参数的敏度分析[J]. 上海交通大学学报, 2020, 54(10): 1045-1052.

    YANG Y D, ZHU B J, GUO Z, et al. The sensitivity analysis of energy system parameters of solar powered unmanned aerial vehicle[J]. Journal of Shanghai Jiao Tong University, 2020, 54(10): 1045-1052(in Chinese).
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  439
  • HTML全文浏览量:  159
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-15
  • 录用日期:  2022-11-04
  • 网络出版日期:  2023-01-05
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答