留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变体太阳能无人机面向通信的总体与能效优化

李梓荣 杨延平 张子健 马晓平

李梓荣,杨延平,张子健,等. 变体太阳能无人机面向通信的总体与能效优化[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2663-2673 doi: 10.13700/j.bh.1001-5965.2022.0254
引用本文: 李梓荣,杨延平,张子健,等. 变体太阳能无人机面向通信的总体与能效优化[J]. 北京亚洲成人在线一二三四五六区学报,2025,51(8):2663-2673 doi: 10.13700/j.bh.1001-5965.2022.0254
LI Z R,YANG Y P,ZHANG Z J,et al. Overall and energy efficiency optimization for communication-oriented morphing solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2663-2673 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0254
Citation: LI Z R,YANG Y P,ZHANG Z J,et al. Overall and energy efficiency optimization for communication-oriented morphing solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(8):2663-2673 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0254

变体太阳能无人机面向通信的总体与能效优化

doi: 10.13700/j.bh.1001-5965.2022.0254
基金项目: 

国家自然科学基金(61901448)

详细信息
    通讯作者:

    E-mail:yanping-yang@qq.com

  • 中图分类号: V221+.6

Overall and energy efficiency optimization for communication-oriented morphing solar-powered UAV

Funds: 

National Natural Science Foundation of China (61901448)

More Information
  • 摘要:

    高空太阳能无人机(SPUAV)平台在充当空中基站增强、补盲偏远地区、灾害应急、远程中继通信方面具有其他平台难以比拟的优势,但太阳能无人机设计域狭窄,需要综合考虑载荷约束和无人机平台特点耦合设计。重点考虑通信任务与平台能量的双重约束,设计一种构型可变的太阳能无人机平台,研究其总体方案设计与优化,使太阳能无人机在满足24 h能量闭合前提下能够最大化覆盖通信范围。通过建立通信、太阳辐照、质量预测等模型,设置能量平衡约束与通信约束条件,建模优化问题,进而设计启发式算法的全局优化框架。仿真分析结果表明:可变构型下的总体方案与常规构型相比能够显著减少总质量,特别是在高空重载的状况下能够提高整体方案的效用,仿真条件下总质量节约13.3%;通信载荷规格的提高及巡航高度的增加能够增加中继通信覆盖范围,但是需要以平台总质量增加作为代价;硬件设计方案一定时,选定低巡航高度可以使通信覆盖效费比更高。

     

  • 图 1  变体与通信中继SPUAVs

    Figure 1.  Morphing and relay communication SPUAVs

    图 2  无人机通信覆盖模型

    Figure 2.  UAV communication coverage model

    图 3  通信覆盖范围平面假设

    Figure 3.  Plane assumption of communication coverage

    图 4  可变机翼太阳能无人机

    Figure 4.  Morphing wing SPUAV

    图 5  总体方案计算框架

    Figure 5.  Overall plan calculation framework

    图 6  无人机通信中继系统模型

    Figure 6.  Model of UAV communication relay system

    图 7  通信中继任务与平台设计的矛盾

    Figure 7.  Contradiction between communication relay task and platform design

    图 8  能量优化飞行轨迹

    Figure 8.  Energy-optimized flight route

    图 9  优化方案飞机总质量

    Figure 9.  Total aircraft weight of optimized solutions

    图 10  优化方案机翼翼展

    Figure 10.  Wingspan of optimized solutions

    图 11  优化方案机翼弦长

    Figure 11.  Chord length of optimized solutions

    图 12  不同巡航高度下覆盖半径与所需信号强度

    Figure 12.  Relationship between coverage radius and required signal strength under varying altitudes

    图 13  太阳能通信中继无人机覆盖半径

    Figure 13.  Coverage radius of relay communication SPUAV

    图 14  覆盖面积质量比

    Figure 14.  Ratio of coverage area to total aircraft weight

    表  1  机载通信设备参数

    Table  1.   Parameters of airborne communication equipment

    通信设备质量/kg 功耗/W 发射功率/W
    0.5 12 1
    5 100 4
    20 200 10
    下载: 导出CSV

    表  2  分系统设计参数

    Table  2.   Design parameters of sub-systems

    参数 取值
    ksc/(kg·m−2) 0.4
    kba/(Wh·kg−1) 300
    kmp/(kg·kW−1) 8
    kpr/(kg·kW−1) 0.42
    ηsc 0.3
    ηmp 0.97
    ηpr 0.85
    ηch 0.95
    ηdc 0.95
    下载: 导出CSV

    表  3  太阳能无人机设计指标

    Table  3.   Design indicators of SPUAV

    飞行日期 纬度/(°) 飞行高度/km
    03-22—09-22 30 10~15
    下载: 导出CSV

    表  4  优化算法组变量选取空间

    Table  4.   Ranges of variables for algorithm optimization

    b/m c/m
    [5,80] [0.5,3]
    下载: 导出CSV

    表  5  通信方面参数[25]

    Table  5.   Communication-related parameters[25]

    参数 数值
    a1 9.6
    a2 0.28
    ηLoS/dB 1
    ηNLoS/dB 20
    N/mW 10−10
    G/dB 16
    γth/dB 10
    λ/mm 150
    下载: 导出CSV
  • [1] ZHU X F, GUO Z, HOU Z X. Solar-powered airplanes: a historical perspective and future challenges[J]. Progress in Aerospace Sciences, 2014, 71: 36-53. doi: 10.1016/j.paerosci.2014.06.003
    [2] 马东立, 张良, 杨穆清, 等. 超长航时太阳能无人机关键技术综述综述[J]. 航空学报, 2020, 41(3): 623418.

    MA D L, ZHANG L, YANG M Q, et al. Review of key technologies of ultra-endurance solar powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(3): 623418(in Chinese) .
    [3] MERWADAY A, TUNCER A, KUMBHAR A, et al. Improved throughput coverage in natural disasters: unmanned aerial base stations for public-safety communications[J]. IEEE Vehicular Technology Magazine, 2016, 11(4): 53-60. doi: 10.1109/MVT.2016.2589970
    [4] HAYAT S, YANMAZ E, MUZAFFAR R. Survey on unmanned aerial vehicle networks for civil applications: a communications viewpoint[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2624-2661.
    [5] BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature, 2020, 588(7836): 77-82. doi: 10.1038/s41586-020-2939-8
    [6] YOUNGBLOOD J, TALAY T. Solar-powered airplane design for long-endurance, high-altitude flight[C]//Proceedings of the 2nd International Very Large Vehicles Conference. Reston: AIAA, 1982.
    [7] NOTH A. Design of solar powered airplanes for continuous flight[D]. Zurich: ETH Zurich, 2008.
    [8] GAO X Z, HOU Z X, GUO Z, et al. Joint optimization of battery mass and flight trajectory for high-altitude solar-powered aircraft[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2014, 228(13): 2439-2451. doi: 10.1177/0954410013518510
    [9] 朱雄峰. 基于广义能量的太阳能飞行器总体设计研究[D]. 长沙: 国防科学技术大学, 2014.

    ZHU X F. Research on overall design of solar vehicle based on generalized energy[D]. Changsha: National University of Defense Technology, 2014(in Chinese).
    [10] WU M J, XIAO T H, ANG H S, et al. Investigation of a morphing wing solar-powered unmanned aircraft with enlarged flight latitude[J]. Journal of Aircraft, 2017, 54(5): 1996-2004. doi: 10.2514/1.C034356
    [11] WU M J, XIAO T H, ANG H S, et al. Optimal flight planning for a Z-shaped morphing-wing solar-powered unmanned aerial vehicle[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(2): 497-505. doi: 10.2514/1.G003000
    [12] WU M J, SHI Z W, ANG H S, et al. Theoretical study on energy performance of a stratospheric solar aircraft with optimum Λ-shaped rotatable wing[J]. Aerospace Science and Technology, 2020, 98: 105670. doi: 10.1016/j.ast.2019.105670
    [13] 安朝, 谢长川, 孟杨, 等. 多体组合式无人机飞行力学稳定性分析及增稳控制研究[J]. 工程力学, 2021, 38(11): 248-256. doi: 10.6052/j.issn.1000-4750.2020.11.0820

    AN C, XIE C C, MENG Y, et al. Flight dynamics and stable control analyses of multi-body aircraft[J]. Engineering Mechanics, 2021, 38(11): 248-256(in Chinese). doi: 10.6052/j.issn.1000-4750.2020.11.0820
    [14] 刘东旭, 谢长川, 洪冠新. 翼尖铰接复合飞行器动力学特性研究[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(11): 2311-2321.

    LIU D X, XIE C C, HONG G X. Dynamic characteristics of wingtip-jointed composite aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(11): 2311-2321(in Chinese).
    [15] 周伟, 马培洋, 周睿孙, 等. 基于PID原理的双机链翼无人机姿态控制[C]//无人系统高峰论坛(USS 2021)论文集. 北京: 无人系统技术, 2021: 6-12.

    ZHOU W, MA P Y, ZHOU R S, et al. Attitude control of two chained wing UAVs based on PID principle[C]//Proceedings of the USS 2021. Beijing: Unmanned Systems Technology, 2021: 6-12(in Chinese) .
    [16] 周伟, 马培洋, 郭正, 等. 基于翼尖链翼的组合固定翼无人机研究进展[J]. 航空学报, 2022, 43(9): 325946.

    ZHOU W, MA P Y, GUO Z, et al. Research progress of combined fixed-wing unmanned aerial vehicle based on wingtip chained[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 325946(in Chinese).
    [17] 吴高峰, 高晓光, 符小卫. 一种基于多无人机的中继节点布置问题建模与优化方法[J]. 航空学报, 2017, 38(11): 321195. doi: 10.7527/S1000-6893.2017.321195

    WU G F, GAO X G, FU X W. Modeling and optimization method of relay node placement using multi-UAV[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 321195(in Chinese). doi: 10.7527/S1000-6893.2017.321195
    [18] 吴钟博, 易建强. 无人机编队支撑网络的协同通信中继策略[J]. 航空学报, 2020, 41(S2): 724319.

    WU Z B, YI J Q. Cooperative communication relay strategy of UAV formation support network[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724319(in Chinese).
    [19] 刘海涛, 顾新宇, 方晓钰, 等. 频率选择性衰落信道DS-CDMA无人机中继通信系统航迹规划[J]. 航空学报, 2019, 40(7): 322633.

    LIU H T, GU X Y, FANG X Y, et al. Path panning for UAV relay communication systems with DS-CDMA over frequency selective fading channel[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7): 322633(in Chinese).
    [20] 张小孟, 杨森, 宋晓, 等. 一种中继无人机快速部署策略[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(8): 1705-1711.

    ZHANG X M, YANG S, SONG X, et al. A rapid deployment strategy of relay unmanned aerial vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1705-1711(in Chinese).
    [21] ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges[J]. IEEE Communications Magazine, 2016, 54(5): 36-42. doi: 10.1109/MCOM.2016.7470933
    [22] SUN Y, XU D F, NG D W K, et al. Optimal 3D-trajectory design and resource allocation for solar-powered UAV communication systems[J]. IEEE Transactions on Communications, 2019, 67(6): 4281-4298. doi: 10.1109/TCOMM.2019.2900630
    [23] YUAN Z W, YANG Y P, HU Y P, et al. Channel-aware potential field trajectory planning for solar-powered relay UAV in near-space[J]. IEEE Access, 2020, 8: 143950-143961. doi: 10.1109/ACCESS.2020.3013319
    [24] 罗祎喆, 丁文锐, 雷耀麟, 等. 系留无人机平台搭载的蜂窝通信基站吞吐量优化[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(6): 1161-1172.

    LUO Y Z, DING W R, LEI Y L, et al. Throughput optimization for cellular communication on tethered unmanned aerial vehicle base station[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1161-1172(in Chinese).
    [25] 李晓伟. 面向无人机的高能效长续航通信覆盖研究[D]. 北京: 北京工业大学, 2020.

    LI X W. Research on UAV-oriented communication coverage with high energy efficiency and long endurance[D]. Beijing: Beijing University of Technology, 2020(in Chinese).
    [26] WANG X Y, YANG Y P, WU D, et al. Mission-oriented 3D path planning for high-altitude long-endurance solar-powered UAVs with optimal energy management[J]. IEEE Access, 2020, 8: 227629-227641. doi: 10.1109/ACCESS.2020.3045934
    [27] HARMATS M, WEIHS D. Hybrid-propulsion high-altitude long-endurance remotely piloted vehicle[J]. Journal of Aircraft, 1999, 36(2): 321-331. doi: 10.2514/2.2443
    [28] LI X H, SUN K J, LI F. General optimal design of solar-powered unmanned aerial vehicle for priority considering propulsion system[J]. Chinese Journal of Aeronautics, 2020, 33(8): 2176-2188. doi: 10.1016/j.cja.2020.04.009
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  401
  • HTML全文浏览量:  123
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 录用日期:  2022-07-06
  • 网络出版日期:  2022-08-18
  • 整期出版日期:  2025-08-31

目录

    /

    返回文章
    返回
    常见问答