-
摘要:
由于在35 km及以上海拔高度的临近空间能够获得与空间类似的太阳光谱和辐射环境,以及太阳电池高空气球标定的便捷性、经济性和准确性,35 km太阳电池高空气球标定方法被认为是目前最佳的空间太阳电池高空原位标定方法。针对在太阳电池高空气球标定方法的实际试验中每组数据标定工况的差别导致标定结果一致性差的问题,通过分析太阳电池温度、辐照度、太阳入射角、光谱失配等因素对高空气球标定的影响,提出太阳电池高空气球标定方法的数据修正模型,并基于飞行标定试验数据验证了所提模型的正确性,同时,对太阳电池高空气球标定数据进行了不确定度分析,短路电流的相对扩展不确定度评估为1.4%(包含因子
k =2)。为后续开展太阳电池高空气球标定试验数据修正提供了的理论依据,并从测量不确定度的角度验证了中国科学院高空气球标定试验的可行性。Abstract:By considering that a spectral and radiation environment similar to space can be obtained at an altitude of 35 km and above, as well as the convenience, economy, and accuracy of solar cell calibration using high-altitude balloons, a high-altitude balloon calibration method for solar cells at 35 km altitude is regarded as the best in-situ calibration method for space solar cells at present. Aiming at the poor consistency in calibration results caused by variations in calibration conditions for each group of data in the actual tests of solar cells using the high-altitude balloon calibration method, this paper analyzed the influence of solar cell temperature, irradiance, solar incidence angle, spectral mismatch, and other factors on high-altitude balloon calibration. A data correction model for this calibration method was proposed and validated using the data obtained from the flight calibration test. Moreover, the uncertainty of the calibration data of solar cells using a high-altitude balloon was analyzed, and a relative expanded uncertainty of 1.4% (
k = 2) was achieved for short-circuit current. This paper can provide theoretical support for the subsequent data correction of high-altitude balloon calibration tests for solar cells. Additionally, it verified the feasibility of the high-altitude balloon calibration test proposed by the Chinese Academy of Sciences from the perspective of measurement uncertainty.-
Key words:
- solar cell /
- high-altitude balloon /
- AM0 calibration /
- metrology /
- uncertainty
-
表 1 短路电流校准过程分析
Table 1. Analysis of short-circuit current calibration process
太阳电池NM3-3 平均短路电流 Isc/mA 标准偏差S/mA 未修正 16.65 0.161 温度修正 16.71 0.118 辐照度修正 16.51 0.142 入射角修正 16.68 0.121 全修正后 16.49 0.105 表 2 4块电池重复测量结果分析
Table 2. Analysis of repeated measurement results of four cells
太阳电池 平均短路电流
Isc/mA标准偏差
S/mA不确定度
A类/%NM 3-3 16.48 0.057 0.10 NM 3-4 16.36 0.086 0.12 NM 3-5 16.42 0.068 0.13 NM 3-6 16.70 0.061 0.12 表 3 不确定度评定汇总
Table 3. Summary of uncertainty evaluation
不确定度来源 类别 标准不确定度/% 重复性测量 A 0.13 测量仪器误差 B 0.10 温度 B 0.12 辐照度 B 0.60 入射角 B 0.20 光谱失配 B 0.20 -
[1] 张俊超, 熊利民, 孟海凤, 等. 标准太阳电池标定值计量方法研究[J]. 计量学报, 2017, 38(2): 171-174. doi: 10.3969/j.issn.1000-1158.2017.02.10ZHANG J C, XIONG L M, MENG H F, et al. Research on the calibration method of reference solar cell[J]. Acta Metrologica Sinica, 2017, 38(2): 171-174(in Chinese). doi: 10.3969/j.issn.1000-1158.2017.02.10 [2] 孟海凤, 熊利民, 张俊超, 等. 太阳电池光电性能参数校准方法研究[J]. 计量学报, 2017, 38(5): 567-570. doi: 10.3969/j.issn.1000-1158.2017.05.10MENG H F, XIONG L M, ZHANG J C, et al. Research on the photo-electric characteristic calibration of solar cells[J]. Acta Metrologica Sinica, 2017, 38(5): 567-570(in Chinese). doi: 10.3969/j.issn.1000-1158.2017.05.10 [3] 杨爱军. 基于太阳模拟器法的钙钛矿太阳电池测量方法研究[J]. 宇航计测技术, 2018, 38(4): 60-66. doi: 10.12060/j.issn.1000-7202.2018.04.12YANG A J. Research on test method for perovskite solar cell based on solar simulator[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(4): 60-66(in Chinese). doi: 10.12060/j.issn.1000-7202.2018.04.12 [4] 徐国宁, 唐宇, 李兆杰, 等. 太阳电池高空气球标定关键技术研究[J]. 太阳能学报, 2021, 42(10): 94-104.XU G N, TANG Y, LI Z J, et al. Research on key technology of solar cell high altitude flight balloon calibration[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 94-104(in Chinese). [5] TU Y G, XU G N, YANG X Y, et al. Mixed-cation perovskite solar cells in space[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(7): 974221. [6] TU Y G, WU J, XU G N, et al. Perovskite solar cells for space applications: progress and challenges[J]. Advanced Materials, 2021, 33(21): 2006545. doi: 10.1002/adma.202006545 [7] International Organization for Standardization. Space systems: single-junction solar cells: measurement and calibration procedures: ISO 15387—2005 [S]. Switzerland: International Organization for Standardization, 2005-06-01. [8] SNYDER D B. Solar cell short circuit current errors and uncertainties during high altitude calibrations[C]//Proceedings of the 38th IEEE Photovoltaic Specialists Conference. Piscataway: IEEE Press, 2012: 2840-2845. [9] International Electrotechnical Commission. Photovoltaic devices – Part 1: measurement of photovoltaic current-voltage characteristics: IEC 60904-1[S]. Switzerland: International Electrotechnical Commission, 2006-09-01. [10] 孟海凤, 徐国宁, 张俊超, 等. 模拟太阳光与高空自然光条件下航天用三结砷化镓太阳电池光电性能测量对比[J]. 光学学报, 2021, 41(3): 0312004. doi: 10.3788/AOS202141.0312004MENG H F, XU G N, ZHANG J C, et al. Comparison of photoelectric performance measurements for GaInP/InGaAs/Ge triple-junction space solar cells based on solar simulator and high altitude natural sunlight[J]. Acta Optica Sinica, 2021, 41(3): 0312004(in Chinese). doi: 10.3788/AOS202141.0312004 [11] BAUR C, KRÖGER I, WINTER S, et al. Comparison of primary high altitude and synthetic calibration methods of solar cells for space applications in view of an updated AM0 spectrum[C]//Proceedings of the IEEE 7th World Conference on Photovoltaic Energy Conversion. Piscataway: IEEE Press, 2018: 1570-1575. [12] HOHEISEL R, WILT D, SCHEIMAN D, et al. AM0 solar cell calibration under near space conditions[C]//Proceedings of the IEEE 40th Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2014: 1811-1814. [13] MYERS M, WOLFORD D, SNYDER D, et al. ER-2 high altitude solar cell calibration flights[C]//Proceedings of the IEEE 42nd Photovoltaic Specialist Conference. Piscataway: IEEE Press, 2015: 1-5. [14] BÜCHER K. Calibration of solar cells for space applications[J]. Progress in Photovoltaics: Research and Applications, 1997, 5(2): 91-107. doi: 10.1002/(SICI)1099-159X(199703/04)5:2<91::AID-PIP163>3.0.CO;2-9 [15] 杨东军, 方伟, 邱红, 等. 太阳辐射的在轨监测和定标[J]. 发光学报, 2010, 31(5): 676-681.YANG D J, FANG W, QIU H, et al. On-orbit data calibration of FY-3A solar irradiance monitor[J]. Chinese Journal of Luminescence, 2010, 31(5): 676-681(in Chinese). [16] 王喜炜, 白建波, 宋昊, 等. 基于温度系数试验的光伏组件性能评估[J]. 太阳能学报, 2020, 41(7): 129-135.WANG X W, BAI J B, SONG H, et al. Performance evaluation of photovoltaic modules based on temperature coefficient test[J]. Acta Energiae Solaris Sinica, 2020, 41(7): 129-135(in Chinese). [17] 周健, 卞洁玉, 李红飞, 等. 晶体硅光伏电池的标准测试[J]. 光学 精密工程, 2014, 22(6): 1517-1523. doi: 10.3788/OPE.20142206.1517ZHOU J, BIAN J Y, LI H F, et al. Standard measurement of crystal silicon solar cells[J]. Optics and Precision Engineering, 2014, 22(6): 1517-1523(in Chinese). doi: 10.3788/OPE.20142206.1517 [18] 王金玉, 胡涛, 袁明翰, 等. 光伏组件最大功率的测量不确定度评定[J]. 太阳能, 2016(8): 46-48. doi: 10.3969/j.issn.1003-0417.2016.08.010WANG J Y, HU T, YUAN M H, et al. Evaluation of measurement uncertainty of maximum power of photovoltaic modules[J]. Solar Energy, 2016(8): 46-48(in Chinese). doi: 10.3969/j.issn.1003-0417.2016.08.010 [19] 梅笑冬, 孙即霖, 李正强, 等. 中国区临近空间太阳辐射环境研究[J]. 光谱学与光谱分析, 2016, 36(3): 609-617.MEI X D, SUN J L, LI Z Q, et al. Radiation environment study of near space in China area[J]. Spectroscopy and Spectral Analysis, 2016, 36(3): 609-617(in Chinese). [20] 蔡川, 张俊超, 熊利民, 等. 光谱失配对太阳电池短路电流测量准确性影响分析[J]. 计量学报, 2018, 39(4): 490-492. doi: 10.3969/j.issn.1000-1158.2018.04.09CAI C, ZHANG J C, XIONG L M, et al. Analysis of spectral mismatch error influences on measurement of solar cell[J]. Acta Metrologica Sinica, 2018, 39(4): 490-492(in Chinese). doi: 10.3969/j.issn.1000-1158.2018.04.09 -


下载: