留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于博弈论的GRA-TOPSIS辐射源威胁评估方法

董鹏宇 王红卫 陈游

董鹏宇, 王红卫, 陈游等 . 基于博弈论的GRA-TOPSIS辐射源威胁评估方法[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(10): 1973-1981. doi: 10.13700/j.bh.1001-5965.2019.0543
引用本文: 董鹏宇, 王红卫, 陈游等 . 基于博弈论的GRA-TOPSIS辐射源威胁评估方法[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(10): 1973-1981. doi: 10.13700/j.bh.1001-5965.2019.0543
DONG Pengyu, WANG Hongwei, CHEN Youet al. GRA-TOPSIS emitter threat assessment method based on game theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1973-1981. doi: 10.13700/j.bh.1001-5965.2019.0543(in Chinese)
Citation: DONG Pengyu, WANG Hongwei, CHEN Youet al. GRA-TOPSIS emitter threat assessment method based on game theory[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(10): 1973-1981. doi: 10.13700/j.bh.1001-5965.2019.0543(in Chinese)

基于博弈论的GRA-TOPSIS辐射源威胁评估方法

doi: 10.13700/j.bh.1001-5965.2019.0543
详细信息
    作者简介:

    董鹏宇  男, 硕士研究生。主要研究方向:信息对抗理论与技术

    王红卫  男, 博士, 副教授。主要研究方向:电子对抗理论与技术、电子信息工程

    通讯作者:

    王红卫, E-mail: hww0818@163.com

  • 中图分类号: TN974

GRA-TOPSIS emitter threat assessment method based on game theory

More Information
  • 摘要:

    将辐射源威胁评估作为多属性决策问题进行处理时,侦察方无法获取敌方辐射源的所有信息,而逼近理想解排序(TOPSIS)法在处理“贫信息”问题时很难得到完美结果,而且其仅仅考虑指标之间的欧氏距离,无法反映各指标间的关联性。针对TOPSIS法存在的问题,将灰色关联分析(GRA)和TOPSIS法结合,提出一种基于博弈论的GRA-TOPSIS辐射源威胁评估模型。在构建辐射源目标综合评价指标体系的基础上,运用博弈论(GT)思想将区间层次分析法(IAHP)所得主观权重和信息熵所得客观权重进行组合得到综合权重,能够较大程度减少单独赋权带来的信息损失。在基于GRA-TOPSIS辐射源威胁评估模型下,构建了关于战场态势的决策信息系统,通过与传统TOPSIS法进行对比仿真,验证了所提方法的有效性,有助于对辐射源进行更精细准确地排序。

     

  • 图 1  辐射源威胁评估体系

    Figure 1.  Emitter threat assessment system

    图 2  区间AHP法确定权重

    Figure 2.  Interval AHP method to determine weight

    图 3  威胁评估流程

    Figure 3.  Flowchart of threat assessment

    图 4  威胁评估结果

    Figure 4.  Threat assessment results

    表  1  脉冲样本图参数

    Table  1.   Parameters of pulse sequence pattern

    目标 RF/MHz PRI/μs PW/μs AOA/(°) PA/dB Ts/μs Te/μs N
    X1 9 500 3 1.2 11 10 1.00 3 072.00 1 024
    X2 9 800 11.4 0.29 2 12 1 340.20 2 799.40 128
    X3 9 000 3.1 1.1 30 6 4 510.00 6 097.20 512
    X4 1 500 100 1.1 15 11 4 670.00 11 070.00 64
    X5 10 000 3 0.5 45 5 7 910.00 9 446.00 512
    下载: 导出CSV

    表  2  辐射源特征参数

    Table  2.   Character parameters of emitter

    目标 Pt/kW /dB Fn/dB L/dB (S/N)min/dB tfa/s
    X1 12 40 4 6 [12, 20] [60, 90]
    X2 12 40 4 6 [12, 20] [60, 90]
    X3 13.5 45 3 4 [10, 20] [60, 90]
    X4 50 48 2 7 [8, 16] [90, 120]
    X5 15 50 3 6 [10, 18] [50, 80]
    下载: 导出CSV

    表  3  目标平台态势参数

    Table  3.   Situation parameters of target platform

    目标 A1(l) A2 A3(k)
    R/km v/(m·s-1) h/m
    X1 3 80 285 6 000 5
    X2 3 50 290 5 500 5
    X3 4 120 250 7 000 5
    X4 2 400 0 0 2
    X5 6 150 0 0 8
    下载: 导出CSV

    表  4  规范化决策矩阵

    Table  4.   Normalization decision matrix

    目标 R Rr RS, N Pd Pfa/10-9 ΔR Rmax Δv vmax C
    X1 0.303 6 0.030 5 0.278 5 0.377 7 0.668 3 0.596 5 0.006 9 0.215 7 0.569 0 0.495 1
    X2 0.871 2 0.102 6 0.682 3 0.481 1 0.334 2 0.248 5 0.006 9 0.410 3 0.540 5 0.383 6
    X3 0.223 6 0.060 8 0.352 3 0.480 6 0.611 5 0.530 2 0.007 0 0.441 4 0.581 2 0.514 1
    X4 0.276 0 0.992 0 0.483 7 0.407 1 0.204 2 0.532 0 0.228 5 0.656 6 0.108 1 0.318 8
    X5 0.145 2 0.029 6 0.314 3 0.478 7 0.161 4 0.142 5 0.973 5 0.398 9 0.185 9 0.491 6
    下载: 导出CSV

    表  5  博弈论所赋各指标集化权重

    Table  5.   Combinational index weights obtained by using game theory

    指标层 区间AHP法权重 熵权法权重 GT权重
    C1 0.071 3 0.080 9 0.074 8
    C2 0.071 3 0.336 2 0.168 5
    C3 0.082 9 0.021 2 0.060 3
    C4 0.117 9 0.001 9 0.075 4
    C5 0.117 9 0.051 3 0.093 5
    C6 0.086 2 0.040 7 0.069 5
    C7 0.086 2 0.382 6 0.194 9
    C8 0.132 8 0.020 8 0.091 7
    C9 0.132 8 0.058 5 0.105 5
    C10 0.100 8 0.005 8 0.066 0
    下载: 导出CSV

    表  6  加权规范化决策矩阵

    Table  6.   Weighted normalization decision matrix

    目标 R Rr RS, N Pd Pfa/10-9 ΔR Rmax Δv vmax C
    X1 0.022 9 0.005 1 0.016 8 0.028 5 0.062 5 0.041 5 0.001 3 0.019 8 0.060 0 0.032 7
    X2 0.065 3 0.017 3 0.041 1 0.036 3 0.031 2 0.017 3 0.001 3 0.037 6 0.057 0 0.025 3
    X3 0.016 7 0.010 2 0.021 2 0.036 2 0.057 2 0.036 8 0.001 4 0.040 5 0.061 3 0.033 9
    X4 0.020 6 0.167 2 0.029 2 0.030 7 0.019 1 0.037 0 0.044 5 0.060 2 0.011 4 0.021 0
    X5 0.010 9 0.005 0 0.019 0 0.036 1 0.015 1 0.009 9 0.189 7 0.036 6 0.019 6 0.032 4
    下载: 导出CSV

    表  7  灰色关联系数矩阵

    Table  7.   Grey relational coefficient matrix

    目标 R Rr RS, N Pd Pfa/10-9 ΔR Rmax Δv vmax C
    X1 0.571 9 0.998 2 0.699 3 0.979 2 1 0.641 4 1 1 0.537 7 0.979 2
    X2 0.996 4 0.821 2 1 0.877 3 0.630 6 0.884 2 1 0.760 4 0.553 4 0.867 9
    X3 0.529 1 0.915 7 0.739 5 0.882 8 0.915 7 0.677 5 0.998 2 0.731 9 0.531 1 1
    X4 0.558 9 0.258 5 0.826 1 0.929 2 0.579 5 0.675 9 0.566 7 0.583 1 1 0.814 1
    X5 0.509 6 1 0.718 9 0.892 6 0.543 8 1 0.230 7 0.770 8 0.873 3 0.974 1
    下载: 导出CSV

    表  8  不同赋权方法的威胁评估结果

    Table  8.   Threat assessment results of different weighting methods

    目标 主观赋权法 客观赋权法 组合赋权法
    相对贴近度 排序结果 相对贴近度 排序结果 相对贴近度 排序结果
    X1 0.353 2 3 0.365 2 2 0.614 8 2
    X2 0.681 4 1 0.930 5 1 0.628 7 1
    X3 0.331 5 4 0.304 0 3 0.568 0 3
    X4 0.317 5 5 0.133 5 5 0.331 3 5
    X5 0.365 4 2 0.267 7 4 0.458 8 4
    下载: 导出CSV
  • [1] 范翔宇, 王红卫, 索中英, 等.基于粗糙集-信息熵的辐射源威胁评估方法[J].北京亚洲成人在线一二三四五六区学报, 2016, 42(8):1755-1761. doi: 10.13700/j.bh.1001-5965.2015.0663

    FAN X Y, WANG H W, SUO Z Y, et al.Radiator threat evaluation method based on rough set and information entropy[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1755-1761(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0663
    [2] 杨远志, 王红卫, 索中英, 等.基于粗糙集-逼近理想解排序的辐射源威胁排序方法[J].兵工学报, 2016, 37(5):945-952.

    YANG Y Z, WANG H W, SUO Z Y, et al.An emitter threat evaluation method based on rough set and TOPSIS[J].Acta Armamentarii, 2016, 37(5):945-952(in Chinese).
    [3] MA S D, ZHANG H Z, YANG G Q.Target threat level assessment based on cloud model under fuzzy and uncertain conditions in air combat simulation[J].Aerospace Science and Technology, 2017, 67:49-53.
    [4] 韩其松, 余敏建, 高阳阳, 等.云模型和距离熵的TOPSIS法空战多目标威胁评估[J].火力与指挥控制, 2019, 44(4):136-141.

    HAN Q S, YU M J, GAO Y Y, et al.TOPSIS method based on cloud model and distance entropy in evaluating the air multi-target threat[J].Fire Control & Command Control, 2019, 44(4):136-141(in Chinese).
    [5] AGARWAL M, BISWAS K K, HANMANDLU M.Generalized ntuitionistic fuzzy soft sets with applications in decision making[J].Applied Soft Computing, 2013, 13(8):3552-3566.
    [6] ZHANG Q, HU J H, FENG J F, et al.Air multi-target threat assessment method based on improved GGIFSS[J].Journal of Intelligent & Fuzzy Systems, 2019, 36(5):4127-4139.
    [7] ZHANG K, KONG W R, LIU P P, et al.Assessment and sequencing of target threat based on intuitionistic fuzzy entropy and dynamic VIKOR[J].Journal of Systems Engineering and Electronics, 2018, 29(2):305-310.
    [8] 陈侠, 刘子龙, 梁红利.基于GA-SLFRWNN的空中目标威胁评估[J].西北工业大学学报, 2019, 37(2):424-432.

    CHEN X, LIU Z L, LIANG H L.Assessment of aerial target based on genetic algorithm optimizing fuzzy recurrent wavelet neural network[J].Journal of Northwestern Polytechnical University, 2019, 37(2):424-432(in Chinese).
    [9] 么洪飞, 王宏健, 王莹, 等.基于遗传算法DDBN参数学习的UUV威胁评估[J].哈尔滨工程大学学报, 2018, 39(12):1972-1978.

    YAO H F, WANG H J, WANG Y, et al.Threat assessment of UUV based on genetic algorithm DDBN parameter learning[J].Journal of Harbin Engineering University, 2018, 39(12):1972-1978(in Chinese).
    [10] ZENG S Z, XIAO Y.TOPSIS method for intuitionistic fuzzy multiple-criteria decision making and its application to investment selection[J].Kybernetes, 2016, 45(2):282-296.
    [11] GU T, REN P Y, JIN M Z, et al.Tourism destination competitiveness evaluation in SiChuan province using TOPSIS model based on information entropy weight[J].Discrete and Continuous Dynamical Systems-Series S, 2019, 12(4-5):771-782. doi: 10.3934/dcdss.2019051
    [12] CAMBAZOGLU S, YAL G P, EKER A M, et al.Geothermal resource assessment of the Gediz Graben utilizing TOPSIS methodology[J].Geothermics, 2019, 80:92-102.
    [13] WU J, SUN J S, ZHA Y, et al.Ranking approach of cross-efficiency based on improved TOPSIS technique[J].Journal of Systems Engineering and Electronics, 2011, 22(4):604-609.
    [14] KHALKHALI A.Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ[J].Journal of Central South University, 2015, 22(1):121-133.
    [15] 杨远志, 于雷, 周中良, 等.基于RS-TOPSIS的空中目标威胁评估[J].北京亚洲成人在线一二三四五六区学报, 2018, 44(5):1001-1007. doi: 10.13700/j.bh.1001-5965.2017.0342

    YANG Y Z, YU L, ZHOU Z L, et al.Air target threat evaluation based on RS-TOPSIS[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5):1001-1007(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0342
    [16] 张浩为, 谢军伟, 葛佳昂, 等.改进TOPSIS的多时刻融合直觉模糊威胁评估[J].控制与决策, 2019, 34(4):811-815.

    ZHANG H W, XIE J W, GE J A, et al.Intuitionistic fuzzy set threat assessment based on improved TOPSIS and multiple times fusion[J].Control and Decision, 2019, 34(4):811-815(in Chinese).
    [17] DENG J L.Introduction to grey system[J].The Journal of Grey System, 1989, 1(1):1-24.
    [18] ZHANG M, LI G X.Combining TOPSIS and GRA for supplier selection problem with interval numbers[J].Journal of Central South University, 2018, 25(5):1116-1128.
    [19] 康长青, 郭立红, 罗艳春, 等.基于模糊贝叶斯网络的态势威胁评估模型[J].光电工程, 2008, 35(5):1-5.

    KANG C Q, GUO L H, LUO Y C, et al.Model of situation and threat assessment based on fuzzy Bayesian network[J].Opto-Electroic Engineering, 2008, 35(5):1-5(in Chinese).
    [20] 王睿甲, 王星, 程嗣怡, 等.基于脉冲样本图的机载RWR/ESM辐射源威胁评估[J].电光与控制, 2015, 22(5):19-24. http://www.cnki.com.cn/Article/CJFDTotal-DGKQ201505007.htm

    WANG R J, WANG X, CHENG S Y, et al.Airborne RWR/ESM threat assessment of radiation source based on pulse sequence pattern[J].Electronics Optics & Control, 2008, 22(5):19-24(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-DGKQ201505007.htm
    [21] KAHRAMAN C, ERTAY T.A fuzzy optimization model for QFD planning process using analytic network approach[J].European Journal of Operational Research, 2006, 171(2):390-411.
    [22] LUO Z, ZHOU J, ZHANG L, et al.A TFN-ANP based approach to evaluate virtual research center comprehensive performance[J].Expert Systems with Applications, 2010, 37(12):8379-8386.
    [23] 张莹, 王红卫, 陈游.基于ICW-RCM的辐射源组合威胁评估[J].系统工程与电子技术, 2018, 40(3):557-562.

    ZHANG Y, WANG H W, CHEN Y.Combined emitter threat assessment based on ICW-RCM[J].Systems Engineering and Electronics, 2018, 40(3):557-562(in Chinese).
  • 加载中
图(4) / 表(8)
计量
  • 文章访问数:  1040
  • HTML全文浏览量:  131
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-14
  • 录用日期:  2020-01-03
  • 网络出版日期:  2020-10-20

目录

    /

    返回文章
    返回
    常见问答