留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

AUV自航对接的类物理数值模拟

吴利红 王诗文 封锡盛 李一平 刘开周

吴利红, 王诗文, 封锡盛, 等 . AUV自航对接的类物理数值模拟[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(4): 683-690. doi: 10.13700/j.bh.1001-5965.2019.0305
引用本文: 吴利红, 王诗文, 封锡盛, 等 . AUV自航对接的类物理数值模拟[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(4): 683-690. doi: 10.13700/j.bh.1001-5965.2019.0305
WU Lihong, WANG Shiwen, FENG Xisheng, et al. Physics-based numerical simulation of AUV docking by self-propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 683-690. doi: 10.13700/j.bh.1001-5965.2019.0305(in Chinese)
Citation: WU Lihong, WANG Shiwen, FENG Xisheng, et al. Physics-based numerical simulation of AUV docking by self-propulsion[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(4): 683-690. doi: 10.13700/j.bh.1001-5965.2019.0305(in Chinese)

AUV自航对接的类物理数值模拟

doi: 10.13700/j.bh.1001-5965.2019.0305
基金项目: 

国家重点研发计划 2017YFC0305901

机器人学国家重点实验室开放课题 2016-O04

中央高校基本科研业务费专项资金 3132017030

详细信息
    作者简介:

    吴利红  女,博士,副教授。主要研究方向:水下机器人、水下对接、水动力学、螺旋桨

    封锡盛  男,博士,研究员,中国工程院院士。主要研究方向:水下机器人总体技术等

    通讯作者:

    吴利红. E-mail:wlh@sia.cn

  • 中图分类号: TP242.6

Physics-based numerical simulation of AUV docking by self-propulsion

Funds: 

National Key R & D Program of China 2017YFC0305901

Project of State Key Laboratory of Robotics 2016-O04

the Fundamental Research Funds for the Central Universities 3132017030

More Information
    Corresponding author: WU Lihong, E-mail:wlh@sia.cn
  • 摘要:

    为了预报dock对自主水下机器人(AUV)水动力性能的影响,提高AUV水下对接成功率,提出一种多块混合网格结合动态层方法和用户自定义函数(UDF)的方法,应用于基于离散螺旋桨的AUV自航对接的类物理数值模拟。所提方法采用移动子区域代替传统的移动边界,可提高数值计算效率。在验证了AUV自航试验速度的基础上,对AUV自航对接的水动力和流场进行分析。结果表明,AUV在螺旋桨定转速300 r/min推进作用下,自航对接时间约16 s,终端速度为0.75 m/s。对接速度满足对接碰撞需求。dock对AUV运动影响:在对接井口B点之前起阻碍作用,在B点之后起吸附作用。AUV对接阻力增加2.4%,增幅小,可实现与dock对接。

     

  • 图 1  三维对接系统模型

    Figure 1.  Three-dimensional model of docking system

    图 2  AUV对接的对称面网格

    Figure 2.  Symmetrical mesh for AUV docking

    图 3  AUV和螺旋桨尾部网格放大图

    Figure 3.  Zoomed-in mesh astern of AUV and propeller

    图 4  AUV网格

    Figure 4.  AUV mesh

    图 5  UDF流程图

    Figure 5.  Flowchart of UDF

    图 6  敞水试验的数值和试验结果对比

    Figure 6.  Comparison between numerical and experimental results in open water tests

    图 7  AUV自航速度曲线

    Figure 7.  AUV velocity curves during self-propulsion

    图 8  推力和阻力曲线

    Figure 8.  Curves of thrust and resistance

    图 9  AUV推力和阻力(在AC点之间)

    Figure 9.  AUV thrust and resistance (between point A and C)

    图 10  AUV速度(在AC点之间)

    Figure 10.  AUV velocity (between point A and C)

    图 11  AUV尾部速度矢量图

    Figure 11.  Velocity vectors astern of AUV

    图 12  AUV自航对接轴向速度云图

    Figure 12.  Axial velocity contours in AUV docking by self-propulsion

    图 13  AUV自航对接的三维压力云图

    Figure 13.  Three-dimensional pressure contours of AUV docking by self-propulsion

  • [1] 燕奎臣, 吴利红.AUV水下对接关键技术研究[J].机器人, 2007, 29(3):267-273.

    YAN K C, WU L H. A survey on the key technologies of AUV underwater docking[J]. Robot, 2007, 29(3):267-273(in Chinese).
    [2] CARRICA P M, CASTRO A M, STERN F.Self-propulsion computations using a speed controller and a discretized propeller with dynamic overset grids[J].Journal of Marine Science and Technology, 2010, 15:316-330. doi: 10.1007-s00773-010-0098-6/
    [3] CARRICA P M, FU H P, STERN F.Computations of self-propulsion free to sink and trim and of motions in head waves of the KRISO container ship(KCS)model[J].Applied Ocean Research, 2011, 33(4):309-320.
    [4] CARRICA P M, HOSSEINI H S, STERN F.CFD analysis of broaching for a model surface combatant with explicit simulation of moving rudders and rotating propellers[J].Computers & Fluids, 2012, 53:117-132.
    [5] CHASE N, CARRICA P M.Submarine propeller computations and application to self-propulsion of DARPA SUBOFF[J].Ocean Engineering, 2013, 60:68-80.
    [6] MOFIDI A, CARRICA P M.Simulation of ZigZag maneuvers for a container ship with direct moving rudder and propeller[J].Computers & Fluids, 2014, 96:191-203.
    [7] 沈志荣.船桨舵相互作用的重叠网格技术数值方法研究[D].上海: 上海交通大学, 2014: 150-162.

    SHEN Z R.Development of overset grid technique for hull-propeller-rudder interactions[D].Shanghai: Shanghai Jiao Tong University, 2014: 150-162(in Chinese).
    [8] 段旭鹏, 常兴华, 张来平.基于动态混合网格的多体分离数值模拟方法[J].空气动力学学报, 2011, 29(4):447-452.

    DUAN X P, CHANG X H, ZHANG L P.A CFD and 6DOF coupled solver for multiple moving object problems based on dynamic hybrid grids[J].Acta Aerodynamica Sinica, 2011, 29(4):447-452(in Chinese).
    [9] 张玉东, 纪楚群.包含动边界的非定常流场动网格数值模拟[J].计算物理, 2006, 23(2):166-170.

    ZHANG Y D, JI C Q.Numerical methods with dynamic structured meshes for unsteady flows with moving boundaries[J].Chinese Journal of Computational Physics, 2006, 23(2):166-170(in Chinese).
    [10] 张来平, 邓小刚, 张涵信.动网格生成技术及非定常计算方法进展综述[J].力学进展, 2010, 40(4):424-446.

    ZHANG L P, DENG X G, ZHANG H X.Reviews of moving grid generation techniques and numerical methods for unsteady flow[J].Advances in Mechanics, 2010, 40(4):424-446(in Chinese).
    [11] 吴利红, 封锡盛, 胡志强.三维动态混合网格在AUV发射过程中的应用[J].船舶力学, 2010, 14(7):717-722.

    WU L H, FENG X S, HU Z Q.Application of 3-D hybrid dynamic grids to simulate the flow in AUV swim-out[J].Journal of Ship Mechanics, 2010, 14(7):717-722(in Chinese).
    [12] WU L H, LI Y P, SU S J, et al.Hydrodynamic analysis of AUV underwater docking with a cone-shaped DOCK under ocean currents[J].Ocean Engineering, 2014, 85:110-126.
    [13] ZHAN J M, CAI W H, HU W Q, et al.Numerical study on the six-DOF anchoring process of gravity anchor using a new mesh update strategy[J].Marine Structures, 2017, 52:173-187.
    [14] 郝继光, 姜毅, 韩书永, 等.一种新的动网格更新技术及其应用[J].弹道学报, 2007, 19(2):88-92.

    HAO J G, JIANG Y, HAN S Y, et al.A new dynamic mesh update method and its applications[J].Journal of Ballistics, 2007, 19(2):88-92(in Chinese).
    [15] WU L H, LI Y P, ZHANG H C, et al.Meshing impact on numerical simulation of marine systems performance[C]//Proceedings of Oceans 2016.Piscataway, NJ: IEEE Press, 2016: 1-6.
    [16] 吴利红, 李一平, 刘开周, 等.基于多块动态混合网格的AUV自航类物理数值模拟[J].机器人, 2019, 41(6):706-712.

    WU L H, LI Y P, LIU K Z, et al.Physics-based numerical simulation of AUV self-propulsion using multi-block hybrid dynamic mesh method[J].Robot, 2019, 41(6):706-712(in Chinese).
    [17] ROBERT S M, BRETT W H, LANCE M, et al.Docking control system for a 54-cm-diameter(21-in)AUV[J].IEEE Journal of Oceanic Engineering, 2008, 33(4):550-562.
  • 加载中
图(13)
计量
  • 文章访问数:  808
  • HTML全文浏览量:  86
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-17
  • 录用日期:  2019-12-06
  • 网络出版日期:  2020-04-20

目录

    /

    返回文章
    返回
    常见问答