Volume 35 Issue 4
Apr.  2009
Turn off MathJax
Article Contents
Yang Bin, Xu Guoqiang, Meng Henghui, et al. Numerical simulation of film cooling effectiveness on rotating curvature models[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 398-402. (in Chinese)
Citation: Yang Bin, Xu Guoqiang, Meng Henghui, et al. Numerical simulation of film cooling effectiveness on rotating curvature models[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 398-402. (in Chinese)

Numerical simulation of film cooling effectiveness on rotating curvature models

  • Received Date: 20 Jul 2008
  • Publish Date: 30 Apr 2009
  • Computations were performed to investigate the adiabatic effectiveness η distributions on the curvature turbine blade models under rotating conditions. In the present study, the Reynolds number Re based on mainstream velocity and film hole diameter varies from 3 198.4 to 6 716.6, the blowing ratio M ranges of 0.2 to 1.2, and the rotation number Rt alters from 0 to 0.015 9. Both κ-ω and the shear-stress transport(SST) models were chosen for turbulence closure. Results show that the increase of Rt leads to decreased η values in the centerline region downstream the film hole, but can improve the integrated effectiveness properly on the pressure surface. The augmentation of M also results in the decreased adiabatic effectiveness, while the variation of Re has little influence on the comprehensive cooling effect. In addition, the values of η on the suction surface are much greater than that on the pressure surface under the same operating conditions.

     

  • loading
  • [1] Goldstein R J.Film cooling [M]. New York and London:Advances in Heat Transfer Academic Press,1971,7:321-379 [2] Han J C, Dutta S, Ekkad S V.Gas turbine heat transfer and cooling technology [M]. New York: Taylor/Francis, 2000: 129-243 [3] Lin Y L, Shih T I P. Film cooling over flat, convex, and concave surfaces 37th AIAA Aerospace Sciences Meeting and Exhibit, 1999 [4] Lutum E, Wolfersdorf J V, Weigand B,et al. Film cooling on a convex surface with zero pressure gradient flow [J].Internal Journal of Heat and Mass Transfer,2000,43:2973-2987 [5] Ito S, Goldstein R J, Eckert E R G. Film cooling of a gas turbine blade [J]. ASME Journal of Engineering for Power, 1978, 100:476-481 [6] Dring R P, Blair M F, Joslyn H D. An experimental investigation of film cooling on a turbine rotor blade [J]. ASME Journal of Engineering for Power, 1980, 102:81-87 [7] Takeishi K, Aoki S, Sato T,et al.Film cooling on a gas turbine rotor blade [J]. ASME Journal of Turbomachinery, 1992, 114: 828-834 [8] Xu G Q, Yang B, Tao Z,et al. Theoretical analysis of rotating film cooling mechanism: part I: dimension-less groups of adiabatic effectiveness and heat transfer coefficient The 12th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery.Hawai,2008 [9] Garg V K. Heat transfer on a film-cooled rotating blade using different turbulence models [J]. International Journal of Heat and Mass Transfer, 1999,42:789-802
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(3152) PDF downloads(892) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return