| Citation: | YANG X Y,MA W B,XIE S. Influence of slight over-discharge on aging behavior of lithium-ion batteries in high-temperature environments[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(12):3903-3911 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0634 |
The extreme high-temperature weather that has occurred worldwide in recent years has significantly increased the probability of lithium-ion batteries operating in high-temperature environments. The battery consistency difference caused by the operating environment and system management makes the battery prone to slight over-discharge. The coupling between high-temperature environment and over-discharge phenomenon significantly increases the risk of battery safety accidents. In order to study the influence of high-temperature environment and slight over-discharge coupling on the aging behavior of lithium-ion batteries, this paper carried out a slight over-discharge experiment on ternary lithium-ion batteries at 60 °C (high temperature) and 25 °C (normal temperature). The results show that the battery capacity attenuation rates after 100 cycles of slight over-discharge at 60 °C and 25 °C are 28.46% and 2.54%, respectively. Compared with that in normal temperature environments, slight over-discharge in high-temperature environments significantly increases the battery capacity attenuation. The electrochemical analysis of the battery shows that high temperatures limit the lithium deintercalation reaction inside the battery, increase the loss of active lithium, and degrade the kinetic performance. Battery disassembly photos, scanning electron microscopy, and elemental analysis results prove that slightly over-discharged batteries in high-temperature environments are severely deformed, and more sediments are produced by battery side reactions. Therefore, the coupling of a high-temperature environment and slight over-discharge will aggravate the damage of the cathode structure and internal side reactions, leading to a decline in battery performance. The research results can provide an experimental reference and theoretical basis for the development of lithium-ion battery materials and the safe operation of electric vehicles.
| [1] |
WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 2019, 73: 95-131. doi: 10.1016/j.pecs.2019.03.002
|
| [2] |
FENG X N, REN D S, HE X M, et al. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
|
| [3] |
谢松, 平现科, 巩译泽. 高高原低气压环境对锂离子电池循环性能的影响[J]. 北京亚洲成人在线一二三四五六区学报, 2022, 48(10): 1883-1888.
XIE S, PING X K, GONG Y Z. Effect of high altitude and low pressure on cycle performance of lithium-ion batteries[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1883-1888 (in Chinese).
|
| [4] |
何俊贤, 谢松, 陈现涛. 气压及加热功率对锂离子电池热安全的影响机制[J]. 北京亚洲成人在线一二三四五六区学报, 2023, 49(11): 3197-3206.
HE J X, XIE S, CHEN X T. Influence mechanism of air pressure and heating power on thermal safety of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(11): 3197-3206 (in Chinese).
|
| [5] |
LIN J Y, LIU X H, LI S, et al. A review on recent progress, challenges and perspective of battery thermal management system[J]. International Journal of Heat and Mass Transfer, 2021, 167: 120834. doi: 10.1016/j.ijheatmasstransfer.2020.120834
|
| [6] |
DU J Y, OUYANG M G, WU X G, et al. Technological direction prediction for battery electric bus under influence of China’s new subsidy scheme[J]. Journal of Cleaner Production, 2019, 222: 267-279. doi: 10.1016/j.jclepro.2019.02.249
|
| [7] |
MIN X Q, XU G J, XIE B, et al. Challenges of prelithiation strategies for next generation high energy lithium-ion batteries[J]. Energy Storage Materials, 2022, 47: 297-318. doi: 10.1016/j.ensm.2022.02.005
|
| [8] |
汽车之家研究院. 2023年中国新能源汽车安全发展报告[EB/OL]. (2024-09-21)[2023-04-04].
The Autohome Research Institute. In 2023 China's new energy automotive safety development report [EB/OL]. (2024-09-21) [2023-04-04].
|
| [9] |
HONG J C, WANG Z P, QU C H, et al. Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles[J]. Applied Energy, 2022, 321: 119229. doi: 10.1016/j.apenergy.2022.119229
|
| [10] |
ZHANG G X, WEI X Z, CHEN S Q, et al. Unlocking the thermal safety evolution of lithium-ion batteries under shallow over-discharge[J]. Journal of Power Sources, 2022, 521: 230990. doi: 10.1016/j.jpowsour.2022.230990
|
| [11] |
BARCELLONA S, COLNAGO S, DOTELLI G, et al. Aging effect on the variation of Li-ion battery resistance as function of temperature and state of charge[J]. Journal of Energy Storage, 2022, 50: 104658. doi: 10.1016/j.est.2022.104658
|
| [12] |
OUYANG D X, WENG J W, CHEN M Y, et al. Impact of high-temperature environment on the optimal cycle rate of lithium-ion battery[J]. Journal of Energy Storage, 2020, 28: 101242. doi: 10.1016/j.est.2020.101242
|
| [13] |
LIU Y D, LIU Q, LI Z F, et al. Failure study of commercial LiFePO4Cells in over-discharge conditions using electrochemical impedance spectroscopy[J]. Journal of the Electrochemical Society, 2014, 161(4): A620-A632. doi: 10.1149/2.090404jes
|
| [14] |
ZHANG L L, MA Y L, CHENG X Q, et al. Capacity fading mechanism during long-term cycling of over-discharged LiCoO2/mesocarbon microbeads battery[J]. Journal of Power Sources, 2015, 293: 1006-1015. doi: 10.1016/j.jpowsour.2015.06.040
|
| [15] |
WANG Z P, XU S Q, ZHU X Q, et al. Effects of short-term over-discharge cycling on the performance of commercial 21, 700 lithium-ion cells and the identification of degradation modes[J]. Journal of Energy Storage, 2021, 35: 102257. doi: 10.1016/j.est.2021.102257
|
| [16] |
ZHANG G X, WEI X Z, CHEN S Q, et al. Revealing the impact of slight electrical abuse on the thermal safety characteristics for lithium-ion batteries[J]. ACS Applied Energy Materials, 2021, 4(11): 12858-12870. doi: 10.1021/acsaem.1c02537
|
| [17] |
LI L, ZHOU X D, JU X Y, et al. Comprehensive analysis on aging behavior and safety performance of LiNixCoyMnzO2/graphite batteries after slight over-discharge cycle[J]. Applied Thermal Engineering, 2023, 225: 120172. doi: 10.1016/j.applthermaleng.2023.120172
|
| [18] |
SHIM J. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J]. Journal of Power Sources, 2002, 112(1): 222-230. doi: 10.1016/S0378-7753(02)00363-4
|
| [19] |
FENG X N, SUN J, OUYANG M G, et al. Characterization of large format lithium ion battery exposed to extremely high temperature[J]. Journal of Power Sources, 2014, 272: 457-467. doi: 10.1016/j.jpowsour.2014.08.094
|
| [20] |
王嗣慧, 徐中领, 杜锐, 等. 高镍三元锂离子电池高温存储性能衰退机理[J]. 储能科学与技术, 2017, 6(4): 770-775. doi: 10.12028/j.issn.2095-4239.2017.0004
WANG S H, XU Z L, DU R, et al. Degradation study of Ni-rich NCM batteries operated at high tempertures[J]. Energy Storage Science and Technology, 2017, 6(4): 770-775 (in Chinese). doi: 10.12028/j.issn.2095-4239.2017.0004
|
| [21] |
OUYANG D X, WENG J W, CHEN M Y, et al. Experimental analysis on the degradation behavior of overdischarged lithium-ion battery combined with the effect of high-temperature environment[J]. International Journal of Energy Research, 2020, 44(1): 229-241. doi: 10.1002/er.4898
|
| [22] |
LIU J L, DUAN Q L, MA M N, et al. Aging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling[J]. Journal of Power Sources, 2020, 445: 227263. doi: 10.1016/j.jpowsour.2019.227263
|
| [23] |
WANG X Y, WEI X Z, ZHU J G, et al. A review of modeling, acquisition, and application of lithium-ion battery impedance for onboard battery management[J]. eTransportation, 2021, 7: 100093. doi: 10.1016/j.etran.2020.100093
|
| [24] |
SHEN W, WANG N, ZHANG J, et al. Heat generation and degradation mechanism of lithium-ion batteries during high-temperature aging[J]. ACS Omega, 2022, 7(49): 44733-44742. doi: 10.1021/acsomega.2c04093
|
| [25] |
章胜桃. 高温条件下锂离子电池退化规律与失效机理研究[D]. 哈尔滨: 哈尔滨理工大学, 2023: 16-20.
ZHANG S T. Study on degradation law and failure mechanism of lithium ion battery at high temperature[D]. Harbin: Harbin University of Science and Technology, 2023: 16-20(in Chinese).
|
| [26] |
FLY A, CHEN R. Rate dependency of incremental capacity analysis (dQ/dV) as a diagnostic tool for lithium-ion batteries[J]. Journal of Energy Storage, 2020, 29: 101329. doi: 10.1016/j.est.2020.101329
|
| [27] |
LIU S, XIONG L, HE C. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode[J]. Journal of Power Sources, 2014, 261: 285-291. doi: 10.1016/j.jpowsour.2014.03.083
|
| [28] |
ANDO K, MATSUDA T, IMAMURA D. Degradation diagnosis of lithium-ion batteries with a LiNi0.5Co0.2Mn0.3O2 and LiMn2O4 blended cathode using dV/dQ curve analysis[J]. Journal of Power Sources, 2018, 390: 278-285. doi: 10.1016/j.jpowsour.2018.04.043
|
| [29] |
FANG S Y, JACKSON D, DREIBELBIS M L, et al. Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer[J]. Journal of Power Sources, 2018, 373: 184-192. doi: 10.1016/j.jpowsour.2017.09.050
|
| [30] |
DU Y T, SHIRONITA S, HOSONO E, et al. Differences in the deterioration behaviors of fast-charged lithium-ion batteries at high and low temperatures[J]. Journal of Power Sources, 2023, 556: 232513. doi: 10.1016/j.jpowsour.2022.232513
|
| [31] |
ZHANG G X, WEI X Z, CHEN S Q, et al. Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries[J]. Journal of Energy Chemistry, 2023, 87: 378-389. doi: 10.1016/j.jechem.2023.08.040
|
| [32] |
XIE S, PING X K, YANG X Y, et al. Influence of atmospheric pressure on the aging mechanism of LiCoO2/graphite cells[J]. Electrochimica Acta, 2024, 474: 143541. doi: 10.1016/j.electacta.2023.143541
|
| [33] |
REN D S, HSU H, LI R H, et al. A comparative investigation of aging effects on thermal runaway behavior of lithium-ion batteries[J]. eTransportation, 2019, 2: 100034. doi: 10.1016/j.etran.2019.100034
|
| [34] |
占佳琦, 邢丽丹. 锂离子电池正极材料过渡金属离子溶出的危害及抑制研究[J]. 材料研究与应用, 2023, 17(5): 902-911.
ZHAN J Q, XING L D. Study on the detriment and inhibition of the dissolution of transition metal ions in cathode materials of lithium-ion batteries[J]. Materials Research and Application, 2023, 17(5): 902-911 (in Chinese).
|