Volume 51 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
YANG Z G,WEI Y H,SHI X D. Electrical properties analysis of composite materials skin bonding structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3313-3323 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0507
Citation: YANG Z G,WEI Y H,SHI X D. Electrical properties analysis of composite materials skin bonding structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(10):3313-3323 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0507

Electrical properties analysis of composite materials skin bonding structures

doi: 10.13700/j.bh.1001-5965.2023.0507
Funds:

National Natural Science Foundation of China (51407185); Supported by the Open Fund of Tianjin Aviation Equipment Safety and Airworthiness Technology Innovation Center (JCZX-2023-KF-06)

More Information
  • Corresponding author: E-mail:xdshi@cauc.edu.cn
  • Received Date: 08 Aug 2023
  • Accepted Date: 28 Sep 2023
  • Available Online: 17 Oct 2025
  • Publish Date: 17 Oct 2023
  • The use of composite materials in modern commercial aircraft is gradually increasing. However, their low electrical conductivity limits their application in skin structures. To enhance the conductivity of current within the skin, additional conductive structures are often bonded. This study modeled the bonding structures of composite aircraft skins and analyzed the electrical properties and influencing factors by establishing equivalent circuits. Using a typical bonding structure model for composite aircraft skin, the effects of structural types and bonding modes on the electrical properties were calculated, and the impact of lightning indirect effects on different bonding modes was analyzed. The results of calculations and simulations show that the material, shape, and size of structural components affect the electrical properties of the skin. Adopting appropriate bonding modes can effectively reduce structural impedance and enhance the shielding performance against lightning indirect effects.

     

  • loading
  • [1]
    JOSÉ A, T G F, BENTO S D M, et al. An innovative approach for integrated airline network and aircraft family optimization[J]. Chinese Journal of Aeronautics, 2020, 33(2): 634-663. doi: 10.1016/j.cja.2019.10.004
    [2]
    JAWAID M, THARIQ M. Sustainable composites for aerospace applications[M]. Cambridge: Woodhead Publishing, 2018: 1-18.
    [3]
    PARVEEZ B, KITTUR M I, BADRUDDIN I A, et al. Scientific advancements in composite materials for aircraft applications: a review[J]. Polymers, 2022, 14(22): 5007. doi: 10.3390/polym14225007
    [4]
    JONES C E, SZTYKIEL M, PENA-ALZOLA R, et al. Correction: grounding topologies for resilient, integrated composite electrical power systems for future aircraft applications[C]//Proceedings of the AIAA Propulsion and Energy Forum. Reston: AIAA, 2019.
    [5]
    赵中杰. 结构-导电复合材料的制备及其导电性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    ZHAO Z J. Preparation and conductivity of structure-conductive composites[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [6]
    CALADO E A, LEITE M, SILVA A. Selecting composite materials considering cost and environmental impact in the early phases of aircraft structure design[J]. Journal of Cleaner Production, 2018, 186: 113-122. doi: 10.1016/j.jclepro.2018.02.048
    [7]
    AMAN F, CHERAGHI S H, KRISHNAN K K, et al. Study of the impact of riveting sequence, rivet pitch, and gap between sheets on the quality of riveted lap joints using finite element method[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(1): 545-562.
    [8]
    康永刚, 李春生, 陈希多, 等. 航空大壁板装配连接局部变形数值建模与仿真分析[J]. 航空制造技术, 2020, 63(3): 45-52.

    KANG Y G, LI C S, CHEN X D, et al. Numerical modeling and simulation analysis of local deformation for aircraft large-walled panel assembly connection[J]. Aeronautical Manufacturing Technology, 2020, 63(3): 45-52(in Chinese).
    [9]
    JONES C E, NORMAN P J, GALLOWAY S J, et al. Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft[C]//Proceedings of the 18th European Conference on Power Electronics and Applications. Piscataway: IEEE Press, 2016: 1-10.
    [10]
    刘国春, 郭荣辉, 秦文峰. 民用飞机复合材料结构制造与维修[M]. 北京: 清华大学出版社, 2020: 19.

    LIU G C, GUO R H, QIN W F. Manufacture and maintenance of composite structure of civil aircraft[M]. Beijing: Tsinghua University Press, 2020: 19(in Chinese).
    [11]
    MALINOWSKI P H, WANDOWSKI T, OSTACHOWICZ W M. Characterisation of CFRP adhesive bonds by electromechanical impedance[C]//Proceedings of the Health Monitoring of Structural and Biological Systems. Belingham: SPIE, 2014: 906415.
    [12]
    MALINOWSKI P H, OSTACHOWICZ W M, BRUNE K, et al. Study of electromechanical impedance changes caused by modifications of CFRP adhesive bonds[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(10): 1592-1600.
    [13]
    REVEL I, PICHE A, PERES G, et al. Modeling strategy for functional current return in large CFRP structures for aircraft applications[C]//Proceedings of the International Symposium on Electromagnetic Compatibility-EMC Europe. Piscataway: IEEE Press, 2008: 1-5.
    [14]
    BANDINELLI M, MORI A, GALGANI G, et al. A surface PEEC formulation for high-fidelity analysis of the current return networks in composite aircrafts[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(5): 1027-1036. doi: 10.1109/TEMC.2015.2422672
    [15]
    GOLEANU A L, DUNAND M, GUICHON J M, et al. Towards the conception and optimisation of the current return path in a composite aircraft[C]//Proceedings of the IEEE International Systems Conference. Piscataway: IEEE Press, 2010: 466-471.
    [16]
    GOLEANU A L, GUICHON J M, DUNAND M, et al. Design and optimization techniques for the current return path in a composite aircraft[C]//Proceedings of the 14th European Conference on Power Electronics and Applications. Piscataway: IEEE Press, 2011: 1-10.
    [17]
    刘建英, 隋政, 张起浩, 等. 复合材料飞机接地回流网络建模与阻抗分析[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(5): 885-893.

    LIU J Y, SUI Z, ZHANG Q H, et al. Modeling and impedance analysis of composite material aircraft grounded return network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(5): 885-893(in Chinese).
    [18]
    杨占刚, 隋政, 张起浩, 等. 复合材料飞机接地回流网络网内压降分析[J]. 航空学报, 2022, 43(1): 324859.

    YANG Z G, SUI Z, ZHANG Q H, et al. Voltage drop in composite aircraft grounding and current return network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(1): 324859(in Chinese).
    [19]
    HEPPE A J. Computation of potential at surface above an energized grid or other electrode, allowing for non-uniform current distribution[J]. IEEE Transactions on Power Apparatus and Systems, 1979, 98(6): 1978-1989.
    [20]
    KOUTEYNIKOFF P. Numerical computation of the grounding resistance of substations and towers[J]. IEEE Transactions on Power Apparatus and Systems, 1980, 99(3): 957-965.
    [21]
    MOUPFOUMA F, TSE W, JALALI M. More about lightning induced effects on systems in a composite aircraft[C]//Proceedings of the SAE Technical Paper Series. Warrendale: SAE International, 2013: 151-162.
    [22]
    龙奕, 胡皓全, 赵家升, 等. 电磁屏蔽效能分析与实例计算[C]//第17届全国电磁兼容学术会议论文集. 广州: 中国通信学会, 2007: 68-73.

    LONG Y, HU H Q, ZHAO J S, et al. Electromagnetic shielding effectiveness analysis and example calculation[C]//Proceedings of the 17th National Conference on Electromagnetic Compatibility. Guangzhou: China Institute of Communications, 2007: 68-73(in Chinese).
    [23]
    周秦汉. 复合材料飞机雷电间接效应仿真研究[D]. 南京: 南京亚洲成人在线一二三四五六区, 2019.

    ZHOU Q H. Simulation study on lightning indirect effect of composite aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019(in Chinese).
    [24]
    United States of America Department of Defense. Electromagnetics environmental effects requirements for systems: MIL-STD-464A[S]. Washington, D. C.: United States of America Department of Defense, 2002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(9)

    Article Metrics

    Article views(239) PDF downloads(8) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return