Volume 51 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
QU Y,WANG S,FENG H,et al. Trajectory optimization of high-altitude balloon in nearspace-ground collaborative observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2955-2967 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0471
Citation: QU Y,WANG S,FENG H,et al. Trajectory optimization of high-altitude balloon in nearspace-ground collaborative observation[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2955-2967 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0471

Trajectory optimization of high-altitude balloon in nearspace-ground collaborative observation

doi: 10.13700/j.bh.1001-5965.2023.0471
Funds:

National Key Research and Development Program of China (2022YFB3901800,2022YFB3901805)

More Information
  • Corresponding author: E-mail:shengwang@aoe.ac.cn
  • Received Date: 19 Jul 2023
  • Accepted Date: 27 Nov 2023
  • Available Online: 23 Dec 2023
  • Publish Date: 20 Dec 2023
  • The requirement of collaborative observation by high-altitude balloon network and ground-based network is increasingly urgent. And coverage consistency is one of its critical problems affecting observation performance, which faces many challenges such as time-varying network topology, limited balloon control ability, and complicated wind field in near space. To improve the coverage consistency of high-altitude balloon network and ground-based network in cooperative observation, high-altitude balloon with secondary airbag but without propulsion device is studied, its trajectory control approach is analyzed from both the vertical direction and the horizontal direction, and its coverage in earth observation is discussed. Considering the time-variant position of high-altitude balloons, a performance index is designed to evaluate the coverage consistency, and a trajectory optimization algorithm for high-altitude balloon is proposed based on whale optimization algorithm. Simulations are carried out under many inputs. And simulation results show that the proposed algorithm can improve the coverage consistency significantly, especially in summer and autumn wind fields with quasi-zero wind layer.

     

  • loading
  • [1]
    顾逸东. 气球科学观测100年[J]. 现代物理知识, 2020, 32(2): 3-12.

    GU Y D. 100 years of scientific balloon observations[J]. Modern Physics, 2020, 32(2): 3-12(in Chinese).
    [2]
    FESEN R, BROWN Y. A method for establishing a long duration, stratospheric platform for astronomical research[J]. Experimental Astronomy, 2015, 39(3): 475-493. doi: 10.1007/s10686-015-9459-9
    [3]
    VOSS P B, HOLE L R, HELBLING E F, et al. Continuous in situ soundings in the Arctic boundary layer: a new atmospheric measurement technique using controlled meteorological balloons[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1): 609-617.
    [4]
    KREMIC T, CHENG A F, HIBBITTS K, et al. Stratospheric balloons for planetary science and the balloon observation platform for planetary science (BOPPS) mission summary[C]//Proceedings of the IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-10.
    [5]
    CARRENO-LUENGO H, CAMPS A, QUEROL J, et al. First results of a GNSS-R experiment from a stratospheric balloon over boreal forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2652-2663. doi: 10.1109/TGRS.2015.2504242
    [6]
    宋平. 基于卫星、火箭和气球探测资料的我国临近空间大气环境特征分析[D]. 长沙: 国防科技大学, 2020: 4-7.

    SONG P. Analysis of atmospheric environment characteristics in China’s near space based on satellite, rocket and balloon detection data[D]. Changsha: National University of Defense Technology, 2020: 4-7(in Chinese).
    [7]
    荆楠, 李创, 潘越, 等. 临近空间高空气球地基探测能力分析[J]. 光子学报, 2016, 45(1): 104002.

    JING N, LI C, PAN Y, et al. Analysis of ground-based detection ability of high altitude balloon in near space[J]. Acta Photonica Sinica, 2016, 45(1): 104002(in Chinese).
    [8]
    王喆, 王振会, 曹晓钟. 毫米波雷达与无线电探空对云垂直结构探测的一致性分析[J]. 气象学报, 2016, 74(5): 815-826.

    WANG Z, WANG Z H, CAO X Z. Consistency analysis for cloud vertical structure derived from millimeter cloud radar and radiosonde profiles[J]. Acta Meteorologica Sinica, 2016, 74(5): 815-826(in Chinese).
    [9]
    韩彦霞, 王成刚, 严家德, 等. 新型边界层气象探空系统的开发与应用[J]. 气象科技, 2017, 45(5): 804-810.

    HAN Y X, WANG C G, YAN J D, et al. Development and application of new boundary layer meteorological sounding system[J]. Meteorological Science and Technology, 2017, 45(5): 804-810(in Chinese).
    [10]
    BELLEMARE M G, CANDIDO S, CASTRO P S, et al. Autonomous navigation of stratospheric balloons using reinforcement learning[J]. Nature, 2020, 588(7836): 77-82. doi: 10.1038/s41586-020-2939-8
    [11]
    RAMESH S S, MA J L, LIM K M, et al. Numerical evaluation of station-keeping strategies for stratospheric balloons[J]. Aerospace Science and Technology, 2018, 80: 288-300. doi: 10.1016/j.ast.2018.07.010
    [12]
    JIANG Y, LV M Y, LI J. Station-keeping control design of double balloon system based on horizontal region constraints[J]. Aerospace Science and Technology, 2020, 100: 105792. doi: 10.1016/j.ast.2020.105792
    [13]
    王益平, 周飞, 徐明. 临近空间浮空器区域驻留控制策略研究[J]. 中国空间科学技术, 2018, 38(1): 63-69.

    WANG Y P, ZHOU F, XU M. Research on control strategy of territory-hovering aerostat in near space[J]. Chinese Space Science and Technology, 2018, 38(1): 63-69(in Chinese).
    [14]
    邓小龙, 李魁, 于春锐, 等. 准零风层新型临近空间浮空器区域驻留性能[J]. 国防科技大学学报, 2019, 41(1): 5-12.

    DENG X L, LI K, YU C R, et al. Station-keeping performance of novel near-space aerostat in quasi-zero wind layer[J]. Journal of National University of Defense Technology, 2019, 41(1): 5-12(in Chinese).
    [15]
    柏方超, 杨希祥, 邓小龙, 等. 基于深度强化学习的风场中浮空器驻留控制[J]. 北京亚洲成人在线一二三四五六区学报, 2024, 50(7): 2354-2366.

    BAI F C, YANG X X, DENG X L, et al. Station keeping control for aerostat in wind fields based on deep reinforcement learning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(7): 2354-2366(in Chinese).
    [16]
    李魁, 邓小龙, 杨希祥, 等. 基于平流层风场预测的浮空器轨迹控制[J]. 北京亚洲成人在线一二三四五六区学报, 2019, 45(5): 1008-1018.

    LI K, DENG X L, YANG X X, et al. Trajectory control of aerostat based on prediction of stratospheric wind field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(5): 1008-1018 (in Chinese).
    [17]
    林康, 马云鹏, 郑泽伟, 等. 基于副气囊的平流层浮空器高度控制[J]. 北京亚洲成人在线一二三四五六区学报, 2022, 48(5): 762-770.

    LIN K, MA Y P, ZHENG Z W, et al. Height control of stratospheric aerostat based on secondary airbag[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(5): 762-770(in Chinese).
    [18]
    龙远, 邓小龙, 杨希祥, 等. 极涡风场中平流层浮空器轨迹仿真研究[J]. 计算机仿真, 2021, 38(8): 37-42.

    LONG Y, DENG X L, YANG X X, et al. Trajectory simulation of stratosphere aerostats in polar vortex wind field[J]. Computer Simulation, 2021, 38(8): 37-42(in Chinese).
    [19]
    邓小龙, 丛伟轩, 李魁, 等. 风场综合利用的新型平流层浮空器轨迹设计[J]. 宇航学报, 2019, 40(7): 748-757.

    DENG X L, CONG W X, LI K, et al. Trajectory design of a novel stratospheric aerostat based on comprehensive utilization of wind fields[J]. Journal of Astronautics, 2019, 40(7): 748-757(in Chinese).
    [20]
    MUELLER J B, ZHAO Y J, GARRARD W L. Optimal ascent trajectories for stratospheric airships using wind energy[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1232-1245. doi: 10.2514/1.41270
    [21]
    常晓飞, 白云飞, 符文星, 等. 基于平流层特殊风场的浮空器定点方案研究[J]. 西北工业大学学报, 2014, 32(1): 12-17.

    CHANG X F, BAI Y F, FU W X, et al. Research on fixed-point aerostat based on its special stratosphere wind field[J]. Journal of Northwestern Polytechnical University, 2014, 32(1): 12-17(in Chinese).
    [22]
    陶梦初, 何金海, 刘毅. 平流层准零风层统计特征及准两年周期振荡对其影响分析[J]. 气候与环境研究, 2012, 17(1): 92-102.

    TAO M C, HE J H, LIU Y. Analysis of the characteristics of the stratospheric quasi-zero wind layer and the effects of the quasi-biennial oscillation on it[J]. Climatic and Environmental Research, 2012, 17(1): 92-102(in Chinese).
    [23]
    胡耀月, 王东海, 吴珍珍, 等. 中国区域临近空间准零风层的观测特征[J]. 空间科学学报, 2022, 42(3): 383-395.

    HU Y Y, WANG D H, WU Z Z, et al. Analysis of the observational characteristics of the quasi-zero wind layer in the near space over China[J]. Chinese Journal of Space Science, 2022, 42(3): 383-395(in Chinese).
    [24]
    MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67. doi: 10.1016/j.advengsoft.2016.01.008
    [25]
    MAFARJA M M, MIRJALILI S. Hybrid whale optimization algorithm with simulated annealing for feature selection[J]. Neurocomputing, 2017, 260: 302-312. doi: 10.1016/j.neucom.2017.04.053
    [26]
    XIONG G J, ZHANG J, SHI D Y, et al. Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm[J]. Energy Conversion and Management, 2018, 174: 388-405. doi: 10.1016/j.enconman.2018.08.053
    [27]
    孙琪, 于永进, 王玉彬, 等. 采用改进鲸鱼算法的配电网综合优化[J]. 电力系统及其自动化学报, 2021, 30(5): 22-29.

    SUN Q, YU Y J, WANG Y B, et al. Comprehensive optimization of distribution network with improved whale algorithm[J]. Proceedings of the Chinese Society of Universities for Electric Power System and its Automation, 2021, 30(5): 22-29(in Chinese).
    [28]
    吴坤, 谭劭昌. 基于改进鲸鱼优化算法的无人机航路规划[J]. 航空学报, 2020, 41(S2): 724286.

    WU K, TAN S C. Route planning of UAV based on improved whale optimization algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724286(in Chinese).
    [29]
    National Oceanic and Atmospheric Administration. U. S. standard atmosphere[S]. Washington D. C. : NOAA, NASA, USAF, 1976.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(7)

    Article Metrics

    Article views(182) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return