Volume 51 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
HA H,GAO X,YAO X J,et al. Signal modulation waveform recognition method based on STF-Net[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3150-3160 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0467
Citation: HA H,GAO X,YAO X J,et al. Signal modulation waveform recognition method based on STF-Net[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3150-3160 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0467

Signal modulation waveform recognition method based on STF-Net

doi: 10.13700/j.bh.1001-5965.2023.0467
Funds:

National Key Research and Development Program of China (2020YFB1807900); Beijing Municipal Natural Science Foundation (L222003)

More Information
  • Corresponding author: E-mail:gaoxiang@nssc.ac.cn
  • Received Date: 14 Jul 2023
  • Accepted Date: 14 Sep 2023
  • Available Online: 17 Sep 2025
  • Publish Date: 13 Oct 2023
  • Signal modulation waveform recognition is one of the key technologies in the field of spectrum cognition and an important means to achieve monitoring and control of spectrum resources for low-orbit satellites. To address the issues of high parameter count and computational complexity in existing deep learning-based modulation waveform recognition methods, a lightweight signal modulation waveform recognition method based on space-time fusion network (STF-Net) is proposed. The method first preprocesses the signals into dual-channel data in the time-frequency domain. It then utilizes convolutional neural network (CNN) to extract signal spatial features and reduce feature redundancy. Long short-term memory (LSTM) is employed to capture temporal information and output recognition results. Experimental results show that the proposed method achieves an average recognition accuracy of 91.79% for modulation waveforms when the signal-to-noise ratio is greater than 0dB. Compared with equivalent methods, the proposed method reduces the parameter count by 96% and improves efficiency by 2.7 times.

     

  • loading
  • [1]
    李高, 王威, 吴启晖. 面向低轨卫星的频谱认知智能管控[J]. 中兴通讯技术, 2021, 27(5): 7-11. doi: 10.12142/ZTETJ.202105003

    LI G, WANG W, WU Q H. Cognitive intelligent spectrum management and control for low earth orbit satellite system[J]. ZTE Technology Journal, 2021, 27(5): 7-11(in Chinese). doi: 10.12142/ZTETJ.202105003
    [2]
    古相平. 浅谈通信信号调制样式自动识别方法[J]. 无线互联科技, 2011, 8(2): 22-23. doi: 10.3969/j.issn.1672-6944.2011.02.007

    GU X P. Discussion on automatic identification method of communication signal modulation pattern[J]. Wireless Internet Technology, 2011, 8(2): 22-23(in Chinese). doi: 10.3969/j.issn.1672-6944.2011.02.007
    [3]
    张海燕, 闫文君, 张立民, 等. 通信信号调制识别综述[J]. 海军航空大学学报, 2022, 37(1): 126-132.

    ZHANG H Y, YAN W J, ZHANG L M, et al. An overview of communication signal modulation recognition[J]. Journal of Naval Aviation University, 2022, 37(1): 126-132(in Chinese).
    [4]
    林冲, 闫文君, 张立民, 等. 通信信号调制识别综述[J]. 中国电子科学研究院学报, 2021, 16(11): 1074-1085. doi: 10.3969/j.issn.1673-5692.2021.11.002

    LIN C, YAN W J, ZHANG L M, et al. An overview of communication signals modulation recognition[J]. Journal of China Academy of Electronics and Information Technology, 2021, 16(11): 1074-1085(in Chinese). doi: 10.3969/j.issn.1673-5692.2021.11.002
    [5]
    HASSAN K, DAYOUB I, HAMOUDA W, et al. Automatic modulation recognition using wavelet transform and neural network[C]// Proceedings of the 9th International Conference on Intelligent Transport Systems Telecommunications. Piscataway: IEEE Press, 2009: 234-238.
    [6]
    闫文康, 闫毅, 范亚楠, 等. 基于小波变换熵值及高阶累积量联合的卫星信号调制识别算法[J]. 空间科学学报, 2021, 41(6): 968-975. doi: 10.11728/cjss2021.06.968

    YAN W K, YAN Y, FAN Y N, et al. A modulation recognition algorithm based on wavelet transform entropy and high-order cumulant for satellite signal modulation[J]. Chinese Journal of Space Science, 2021, 41(6): 968-975(in Chinese). doi: 10.11728/cjss2021.06.968
    [7]
    李世平, 陈方超, 王隆, 等. 多径信道下基于循环谱特征的调制识别算法[J]. 计算机应用, 2012, 32(8): 2123-2127.

    LI S P, CHEN F C, WANG L, et al. Modulation identification algorithm based on cyclic spectrum characteristics in multipath channel[J]. Journal of Computer Applications, 2012, 32(8): 2123-2127(in Chinese).
    [8]
    DONG S L, LI Z P, ZHAO L F. A modulation recognition algorithm based on cyclic spectrum and SVM classification[C]// Proceeding of the IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE Press, 2020: 2123-2127.
    [9]
    FLOHBERGER M, GAPPMAIR W, KOUDELKA O. Modulation classifier for signals used in satellite communications[C]// Proceeding of the 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop. Piscataway: IEEE Press, 2010: 198-202.
    [10]
    李跃, 郭兴吉, 赵欣. 基于高阶累积量的调制方式识别研究[J]. 西南科技大学学报, 2018, 33(3): 64-68. doi: 10.3969/j.issn.1671-8755.2018.03.013

    LI Y, GUO X J, ZHAO X. Study on modulation recognition based on higher-order cumulants[J]. Journal of Southwest University of Science and Technology, 2018, 33(3): 64-68(in Chinese). doi: 10.3969/j.issn.1671-8755.2018.03.013
    [11]
    RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    [12]
    TOKOZUME Y, HARADA T. Learning environmental sounds with end-to-end convolutional neural network[C]// Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE Press, 2017: 2721-2725.
    [13]
    GAN C Q, WANG L, ZHANG Z F, et al. Sparse attention based separable dilated convolutional neural network for targeted sentiment analysis[J]. Knowledge-Based Systems, 2020, 188: 104827. doi: 10.1016/j.knosys.2019.06.035
    [14]
    WANG D S, ZHANG M, LI Z, et al. Modulation format recognition and OSNR estimation using CNN-based deep learning[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1667-1670. doi: 10.1109/LPT.2017.2742553
    [15]
    PENG S L, JIANG H Y, WANG H X, et al. Modulation classification based on signal constellation diagrams and deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(3): 718-727. doi: 10.1109/TNNLS.2018.2850703
    [16]
    DOAN V S, HUYNH-THE T, HUA C H, et al. Learning constellation map with deep CNN for accurate modulation recognition[C]// Proceeding of the IEEE Global Communications Conference. Piscataway: IEEE Press, 2020: 1-6.
    [17]
    TENG C F, LIAO C C, CHEN C H, et al. Polar feature based deep architectures for automatic modulation classification considering channel fading[C]// Proceeding of the IEEE Global Conference on Signal and Information Processing. Piscataway: IEEE Press, 2018: 554-558.
    [18]
    TENG C F, CHOU C Y, CHEN C H, et al. Accumulated polar feature-based deep learning for efficient and lightweight automatic modulation classification with channel compensation mechanism[J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15472-15485. doi: 10.1109/TVT.2020.3041843
    [19]
    KARRA K, KUZDEBA S, PETERSEN J. Modulation recognition using hierarchical deep neural networks[C]// Proceeding of the IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway: IEEE Press, 2017: 1-3.
    [20]
    O’SHEA T J, CORGAN J, CLANCY T C. Convolutional radio modulation recognition networks[C]// Proceeding of the Engineering Applications of Neural Networks. Berlin: Springer, 2016: 213-226.
    [21]
    YASHASHWI K, SETHI A, CHAPORKAR P. A learnable distortion correction module for modulation recognition[J]. IEEE Wireless Communications Letters, 2019, 8(1): 77-80. doi: 10.1109/LWC.2018.2855749
    [22]
    WEST N E, O’SHEA T. Deep architectures for modulation recognition[C]// Proceeding of the IEEE International Symposium on Dynamic Spectrum Access Networks. Piscataway: IEEE Press, 2017: 1-6.
    [23]
    WU Y L, LI X J, FANG J. A deep learning approach for modulation recognition via exploiting temporal correlations[C]// Proceeding of the IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications. Piscataway: IEEE Press, 2018: 1-5.
    [24]
    ZHANG Z F, LUO H, WANG C, et al. Automatic modulation classification using CNN-LSTM based dual-stream structure[J]. IEEE Transactions on Vehicular Technology, 2020, 69(11): 13521-13531. doi: 10.1109/TVT.2020.3030018
    [25]
    REN Y, JIANG W, LIU Y. Complex-valued parallel convolutional recurrent neural networks for automatic modulation classification [C]// Proceeding of the IEEE 25th International Conference on Computer Supported Cooperative Work in Design. Piscataway: IEEE Press, 2022: 804-809.
    [26]
    ZHANG F X, LUO C B, XU J L, et al. An autoencoder-based I/Q channel interaction enhancement method for automatic modulation recognition[J]. IEEE Transactions on Vehicular Technology, 2023, 72(7): 9620-9625. doi: 10.1109/TVT.2023.3248625
    [27]
    XU J L, LUO C B, PARR G, et al. A spatiotemporal multi-channel learning framework for automatic modulation recognition[J]. IEEE Wireless Communications Letters, 2020, 9(10): 1629-1632. doi: 10.1109/LWC.2020.2999453
    [28]
    LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. doi: 10.1162/neco.1989.1.4.541
    [29]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(8)

    Article Metrics

    Article views(257) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return