Volume 51 Issue 9
Sep.  2025
Turn off MathJax
Article Contents
MENG G L,CONG Z L,SONG B,et al. A review of Bayesian network structure learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2829-2849 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0445
Citation: MENG G L,CONG Z L,SONG B,et al. A review of Bayesian network structure learning[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):2829-2849 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0445

A review of Bayesian network structure learning

doi: 10.13700/j.bh.1001-5965.2023.0445
Funds:

National Natural Science Foundation of China (61973222); Liaoning Talent Program (XLYC2007144); Shenyang Natural Science Foundation (22-315-6-09)

More Information
  • Corresponding author: E-mail:mengguanglei@yeah.net
  • Received Date: 07 Jul 2023
  • Accepted Date: 04 Aug 2023
  • Available Online: 08 Sep 2023
  • Publish Date: 05 Sep 2023
  • Bayesian networks, as a tool combining probability theory and graph theory, have the ability to efficiently handle uncertain reasoning and data analysis, and are widely used in various fields to solve complex engineering problems. Furthermore, the model can be learned by combining prior knowledge and training samples, overcoming the limitations of establishing the model solely relying on expert knowledge. Based on this, the development history of Bayesian networks was reviewed. The proposed Bayesian network structure learning algorithms were classified and summarized from three aspects: constraint-based methods, rating-based methods, and hybrid search algorithms respectively, and the current research status of various algorithms was summarized and analyzed. Since the data in practical applications often have incompleteness, the research status of incomplete Bayesian network structure learning is explained from two dimensions: missing data processing and latent variable learning. The application of Bayesian networks in different fields is expounded and summarized, and the development trend of future research on Bayesian network structure learning algorithms is discussed.

     

  • loading
  • [1]
    LEE S J, SIAU K. A review of data mining techniques[J]. Industrial Management & Data Systems, 2001, 101(1): 41-46.
    [2]
    HECKERMAN D, MAMDANI A, WELLMAN M P. Real-world applications of Bayesian networks[J]. Communications of the ACM, 1995, 38(3): 24-26. doi: 10.1145/203330.203334
    [3]
    SPIRTES P, GLYMOUR C, SCHEINES R. Reply to Humphreys and Freedman’s review of causation, prediction, and search[J]. The British Journal for the Philosophy of Science, 1997, 48(4): 555-568. doi: 10.1093/bjps/48.4.555
    [4]
    COLOMBO D, MAATHUIS M H. Order-independent constraint-based causal structure learning[EB/OL]. (2013-09-27)[2023-07-01]. http://arxiv.org/abs/1211.3295v2.
    [5]
    LIU J X, TIAN Z L. Verification of three-phase dependency analysis Bayesian network learning method for maize carotenoid gene mining[J]. BioMed Research International, 2017, 2017: 1813494.
    [6]
    MASEGOSA A R, MORAL S. An interactive approach for Bayesian network learning using domain/expert knowledge[J]. International Journal of Approximate Reasoning, 2013, 54(8): 1168-1181. doi: 10.1016/j.ijar.2013.03.009
    [7]
    COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Machine Learning, 1992, 9(4): 309-347.
    [8]
    NEATH A A, CAVANAUGH J E. The Bayesian information criterion: background, derivation, and applications[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2012, 4(2): 199-203. doi: 10.1002/wics.199
    [9]
    LIU H, CAO Y H. Study of heuristic search and exhaustive search in search algorithms of the structural learning[C]//Proceedings of the 2nd International Conference on Multimedia and Information Technology. Piscataway: IEEE Press, 2010: 169-171.
    [10]
    CHAKRABORTY A, KAR A K. Swarm intelligence: a review of algorithms[M]//PATNAIK S, YANG X S, NAKAMATSU K. Nature-inspired computing and optimization. Berlin: Springer, 2017: 475-494.
    [11]
    GEFFNER H, DECHTER R, HALPERN J Y. Probabilistic and causal inference: the works of Judea Pearl[M]. New York: ACM, 2022.
    [12]
    PEARL J. Causality: models, reasoning and inference[M]. Cambridge: Cambridge University Press, 2000.
    [13]
    DAGUM P, GALPER A. Additive belief-network models[C]//Proceedings of the Uncertainty in Artificial Intelligence. Amsterdam: Elsevier, 1993: 91-98.
    [14]
    BATCHELOR C, CAIN J. Application of belief networks to water management studies[J]. Agricultural Water Management, 1999, 40(1): 51-57. doi: 10.1016/S0378-3774(98)00103-6
    [15]
    TICEHURST J L, NEWHAM L T H, RISSIK D, et al. A Bayesian network approach for assessing the sustainability of coastal lakes in New South Wales, Australia[J]. Environmental Modelling & Software, 2007, 22(8): 1129-1139.
    [16]
    SPIRTES P, GLYMOUR C, SCHEINES R. From probability to causality[J]. Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, 1991, 64(1): 1-36. doi: 10.1007/BF00356088
    [17]
    GEIGER D, VERMA T, PEARL J. D-separation: from theorems to algorithms[M]//HENRION M, SHACHTER R D, KANAL L N, et al. Uncertainty in artificial intelligence. Amsterdam: Elsevier, 1990: 139-148.
    [18]
    CHENG J, GREINER R, KELLY J, et al. Learning Bayesian networks from data: an information-theory based approach[J]. Artificial Intelligence, 2002, 137(1-2): 43-90. doi: 10.1016/S0004-3702(02)00191-1
    [19]
    YEHEZKEL R, LERNER B. Bayesian network structure learning by recursive autonomy identification[C]//Proceedings of the Structural, Syntactic, and Statistical Pattern Recognition. Berlin: Springer, 2006: 154-162.
    [20]
    DE MORAIS S R, AUSSEM A. An efficient and scalable algorithm for local Bayesian network structure discovery[C]//Proceedings of the Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2010: 164-179.
    [21]
    MAHDI R, MEZEY J. Sub-local constraint-based learning of Bayesian networks using a joint dependence criterion[J]. Journal of Machine Learning Research, 2013, 14(1): 1563-1603.
    [22]
    VILLANUEVA E, MACIEL C D. Efficient methods for learning Bayesian network super-structures[J]. Neurocomputing, 2014, 123: 3-12. doi: 10.1016/j.neucom.2012.10.035
    [23]
    MINN S, 傅顺开. 贝叶斯网络结构加速学习算法[J]. 计算机科学, 2016, 43(2): 263-268. doi: 10.11896/j.issn.1002-137X.2016.02.055

    MINN S, FU S K. Accelerating structure learning of Bayesian network[J]. Computer Science, 2016, 43(2): 263-268(in Chinese). doi: 10.11896/j.issn.1002-137X.2016.02.055
    [24]
    JIANG Y L, LIANG Z Z, GAO H, et al. An improved constraint-based Bayesian network learning method using Gaussian kernel probability density estimator[J]. Expert Systems with Applications, 2018, 113: 544-554. doi: 10.1016/j.eswa.2018.06.058
    [25]
    BREGOLI A, SCUTARI M, STELLA F. A constraint-based algorithm for the structural learning of continuous-time Bayesian networks[J]. International Journal of Approximate Reasoning, 2021, 138: 105-122. doi: 10.1016/j.ijar.2021.08.005
    [26]
    MARELLA D, VICARD P. Bayesian network structural learning from complex survey data: a resampling based approach[J]. Statistical Methods & Applications, 2022, 31(4): 981-1013.
    [27]
    ZGUROVSKII M Z, BIDYUK P I, TERENT’EV A N. Methods of constructing Bayesian networks based on scoring functions[J]. Cybernetics and Systems Analysis, 2008, 44(2): 219-224. doi: 10.1007/s10559-008-0021-x
    [28]
    SIMONS K T, KOOPERBERG C, HUANG E, et al. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions[J]. Journal of Molecular Biology, 1997, 268(1): 209-225. doi: 10.1006/jmbi.1997.0959
    [29]
    YANG S L, CHANG K C. Comparison of score metrics for Bayesian network learning[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2002, 32(3): 419-428. doi: 10.1109/TSMCA.2002.803772
    [30]
    SCUTARI M. An empirical-Bayes score for discrete Bayesian networks[C]//Proceedings of the Conference on Probabilistic Graphical Models. [S. l. ]: PMLR, 2016: 438-448.
    [31]
    DE CAMPOS L M, FRIEDMAN N. A scoring function for learning Bayesian networks based on mutual information and conditional independence tests[J]. Journal of Machine Learning Research, 2006, 7(10): 2149-2187.
    [32]
    DE CAMPOS L M, FERNÁNDEZ-LUNA J M, GÁMEZ J A, et al. Ant colony optimization for learning Bayesian networks[J]. International Journal of Approximate Reasoning, 2002, 31(3): 291-311. doi: 10.1016/S0888-613X(02)00091-9
    [33]
    VAN LAARHOVEN P J M, AARTS E H L. Simulated annealing [M]//VAN LAARHOVEN P J M, AARTS E H L. Simulated annealing: theory and applications. Berlin: Springer, 1987: 7-15.
    [34]
    BOUCKAERT R R. Properties of Bayesian belief network learning algorithms[C]//Proceedings of the 10th Annual Conference on Uncertainty in Artificial Intelligence . Amsterdam: Elsevier, 1994: 102-109.
    [35]
    李晓晴, 于海征. 贝叶斯网络结构学习的双重K2算法[J]. 科学技术与工程, 2022, 22(24): 10602-10610. doi: 10.3969/j.issn.1671-1815.2022.24.031

    LI X Q, YU H Z. Double K2 algorithm for Bayesian network structure learning[J]. Science Technology and Engineering, 2022, 22(24): 10602-10610(in Chinese). doi: 10.3969/j.issn.1671-1815.2022.24.031
    [36]
    SELMAN B, GOMES C P. Hill-climbing search[J]. Encyclopedia of Cognitive Science, 2006, 81: 82.
    [37]
    GLOVER F, LAGUNA M. Tabu search[M]//DU D Z, PARDALOS P M. Handbook of combinatorial optimization. Berlin: Springer, 1998: 2093-229.
    [38]
    刘大有, 王飞, 卢奕南, 等. 基于遗传算法的Bayesian网结构学习研究[J]. 计算机研究与发展, 2001, 38(8): 916-922.

    LIU D Y, WANG F, LU Y N, et al. Research on learning Bayesian network structure based on genetic algorithms[J]. Journal of Computer Research and Development, 2001, 38(8): 916-922(in Chinese).
    [39]
    CUI G, WONG M L, LUI H K. Machine learning for direct marketing response models: Bayesian networks with evolutionary programming[J]. Management Science, 2006, 52(4): 597-612. doi: 10.1287/mnsc.1060.0514
    [40]
    GÁMEZ J A, PUERTA J M. Searching for the best elimination sequence in Bayesian networks by using ant colony optimization[J]. Pattern Recognition Letters, 2002, 23(1-3): 261-277. doi: 10.1016/S0167-8655(01)00123-4
    [41]
    GHEISARI S, MEYBODI M R. BNC-PSO: structure learning of Bayesian networks by particle swarm optimization[J]. Information Sciences, 2016, 348: 272-289. doi: 10.1016/j.ins.2016.01.090
    [42]
    SAHIN F, DEVASIA A. Distributed particle swarm optimization for structural Bayesian network learning[M]//CHAN F, TIWARI M. Swarm intelligence, focus on ant and particle swarm optimization. London: IntechOpen Limited, 2007: 505-532.
    [43]
    ASKARI M B A, AHSAEE M G. Bayesian network structure learning based on cuckoo search algorithm[C]//Proceedings of the 6th Iranian Joint Congress on Fuzzy and Intelligent Systems. Piscataway: IEEE Press, 2018: 127-130.
    [44]
    KAREEM S W, OKUR M C. Evaluation of Bayesian network structure learning using elephant swarm water search algorithm [M]//SHI C. Handbook of research on advancements of swarm intelligence algorithms for solving real-world problems. Hershey: Engineering Science Reference, 2020: 139-159.
    [45]
    WANG J Y, LIU S Y. Novel binary encoding water cycle algorithm for solving Bayesian network structures learning problem[J]. Knowledge-Based Systems, 2018, 150: 95-110. doi: 10.1016/j.knosys.2018.03.007
    [46]
    JI J Z, WEI H K, LIU C N. An artificial bee colony algorithm for learning Bayesian networks[J]. Soft Computing, 2013, 17(6): 983-994. doi: 10.1007/s00500-012-0966-6
    [47]
    YANG C C, JI J Z, LIU J M, et al. Structural learning of Bayesian networks by bacterial foraging optimization[J]. International Journal of Approximate Reasoning, 2016, 69: 147-167. doi: 10.1016/j.ijar.2015.11.003
    [48]
    JI J Z, YANG C C, LIU J M, et al. A comparative study on swarm intelligence for structure learning of Bayesian networks[J]. Soft Computing, 2017, 21(22): 6713-6738. doi: 10.1007/s00500-016-2223-x
    [49]
    张亮, 章兢. 改进遗传优化的贝叶斯网络结构学习[J]. 计算机系统应用, 2011, 20(9): 68-72. doi: 10.3969/j.issn.1003-3254.2011.09.015

    ZHANG L, ZHANG J. Structure learning of BN based on improved genetic algorithm[J]. Computer Systems & Applications, 2011, 20(9): 68-72(in Chinese). doi: 10.3969/j.issn.1003-3254.2011.09.015
    [50]
    金焱, 胡云安, 张瑾, 等. K2与模拟退火相结合的贝叶斯网络结构学习[J]. 东南大学学报(自然科学版), 2012, 42(增刊1): 82-86.

    JIN Y, HU Y A, ZHANG J, et al. Bayesian network structure learning based on K2 and simulated annealing[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(Sup 1): 82-86(in Chinese).
    [51]
    潘成胜, 张斌, 吕亚娜, 等. 改进灰狼优化算法的K-Means文本聚类[J]. 计算机工程与应用, 2021, 57(1): 188-193. doi: 10.3778/j.issn.1002-8331.2004-0016

    PAN C S, ZHANG B, LYU Y N, et al. K-Means text clustering based on improved gray wolf optimization algorithm[J]. Computer Engineering and Applications, 2021, 57(1): 188-193(in Chinese). doi: 10.3778/j.issn.1002-8331.2004-0016
    [52]
    WANG X C, REN H J, GUO X X. A novel discrete firefly algorithm for Bayesian network structure learning[J]. Knowledge-Based Systems, 2022, 242: 108426. doi: 10.1016/j.knosys.2022.108426
    [53]
    CONSTANTINOU A C, LIU Y, KITSON N K, et al. Effective and efficient structure learning with pruning and model averaging strategies[J]. International Journal of Approximate Reasoning, 2022, 151: 292-321. doi: 10.1016/j.ijar.2022.09.016
    [54]
    CHOW C, LIU C. Approximating discrete probability distributions with dependence trees[J]. IEEE Transactions on Information Theory, 1968, 14(3): 462-467. doi: 10.1109/TIT.1968.1054142
    [55]
    BOUCKAERT R R. Bayesian belief networks: from construction to inference[D]. Utrecht: Utrecht University, 1995.
    [56]
    HECKERMAN D, GEIGER D, CHICKERING D M. Learning Bayesian networks: the combination of knowledge and statistical data[C]//Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence. Amsterdam: Elsevier, 1994: 293-301.
    [57]
    LARRANAGA P, KUIJPERS C M H, MURGA R H, et al. Learning Bayesian network structures by searching for the best ordering with genetic algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 1996, 26(4): 487-493. doi: 10.1109/3468.508827
    [58]
    DE CAMPOS L M, PUERTA J M. Stochastic local and distributed search algorithms for learning belief networks[C]//Proceedings of the Ⅲ International Symposium on Adaptive Systems: Evolutionary Computation and Probabilistic Graphical Model. Berlin: Springer, 2001: 109-115.
    [59]
    CHICKERING D M. Optimal structure identification with greedy search[J]. Journal of Machine Learning Research, 2002, 3: 507-554.
    [60]
    DE CAMPOS L M, GÁMEZ J A, PUERTA J M. Learning Bayesian networks by ant colony optimisation: searching in two different spaces[J]. Mathware & Soft Computing, 2002, 9: 2-3.
    [61]
    SHETTY S, SONG M. Structure learning of Bayesian networks using a semantic genetic algorithm-based approach[C]//Proceedings of the 3rd International Conference on Information Technology: Research and Education. Piscataway: IEEE Press, 2005: 454-458.
    [62]
    CHAN L S H, CHU A M Y, SO M K P. A hybrid Markov chain Monte Carlo approach for structural learning in Bayesian networks based on variable blocking[EB/OL]. [2023-07-01]. http://doi.org/10.1214/25-BA1521.
    [63]
    SALEHPOUR A A, MIRMOBIN B, AFZALI-KUSHA A, et al. An energy efficient routing protocol for cluster-based wireless sensor networks using ant colony optimization[C]//Proceedings of the International Conference on Innovations in Information Technology. Piscataway: IEEE Press, 2008: 455-459.
    [64]
    ZHAO J, SUN J, XU W B, et al. Structure learning of Bayesian networks based on discrete binary quantum-behaved particle swarm optimization algorithm[C]//Proceedings of the 5th International Conference on Natural Computation. Piscataway: IEEE Press, 2009: 86-90.
    [65]
    JI J Z, ZHANG H X, HU R B, et al. A Bayesian network learning algorithm based on independence test and ant colony optimization[J]. Acta Automatica Sinica, 2009, 35(3): 281-288.
    [66]
    LI X L. A particle swarm optimization and immune theory-based algorithm for structure learning of Bayesian networks[J]. International Journal of Database Theory and Application, 2010, 3(2): 61-69.
    [67]
    HAUSER A, BÜHLMANN P. Characterization and greedy learning of interventional Markov equivalence classes of directed acyclic graphs[J]. Journal of Machine Learning Research, 2012, 13(1): 2409-2464.
    [68]
    AOUAY S, JAMOUSSI S, AYED Y B. Particle swarm optimization based method for Bayesian network structure learning[C]//Proceedings of the 5th International Conference on Modeling, Simulation and Applied Optimization. Piscataway: IEEE Press, 2013: 1-6.
    [69]
    RAMSEY J, GLYMOUR M, SANCHEZ-ROMERO R, et al. A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images[J]. International Journal of Data Science and Analytics, 2017, 3(2): 121-129. doi: 10.1007/s41060-016-0032-z
    [70]
    SCANAGATTA M, CORANI G, ZAFFALON M. Improved local search in Bayesian networks structure learning[C]//Proceedings of the Advanced Methodologies for Bayesian Networks. [S. l. ]: PMLR, 2017: 45-56.
    [71]
    JOSE S, LOUIS S J, DASCALU S M, et al. Bayesian network structure learning using case-injected genetic algorithms[C]//Proceedings of the IEEE 32nd International Conference on Tools with Artificial Intelligence. Piscataway: IEEE Press, 2020: 572-579.
    [72]
    BEHJATI S, BEIGY H. Improved K2 algorithm for Bayesian network structure learning[J]. Engineering Applications of Artificial Intelligence, 2020, 91: 103617. doi: 10.1016/j.engappai.2020.103617
    [73]
    BERNAOLA N, MICHIELS M, LARRAÑAGA P, et al. Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian networks[J]. PLoS Computational Biology, 2023, 19(12): e1011443. doi: 10.1371/journal.pcbi.1011443
    [74]
    SINGH M, VALTORTA M. Construction of Bayesian network structures from data: a brief survey and an efficient algorithm[J]. International Journal of Approximate Reasoning, 1995, 12(2): 111-131. doi: 10.1016/0888-613X(94)00016-V
    [75]
    DASH D, DRUZDZEL M J. A hybrid anytime algorithm for the construction of causal models from sparse data[EB/OL]. (2013-01-23)[2023-07-01]. http://arxiv.org/abs/1301.6689.
    [76]
    DE CAMPOS L M, FERNÁNDEZ-LUNA J M, PUERTA J M. An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests[J]. International Journal of Intelligent Systems, 2003, 18(2): 221-235. doi: 10.1002/int.10085
    [77]
    TSAMARDINOS I, BROWN L E, ALIFERIS C F. The max-min hill-climbing Bayesian network structure learning algorithm[J]. Machine Learning, 2006, 65(1): 31-78. doi: 10.1007/s10994-006-6889-7
    [78]
    LIU H, ZHOU S G, LAM W, et al. A new hybrid method for learning Bayesian networks: separation and reunion[J]. Knowledge-Based Systems, 2017, 121: 185-197. doi: 10.1016/j.knosys.2017.01.029
    [79]
    CASTELO R, ROVERATO A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n[J]. Journal of Machine Learning Research, 2006, 7(12): 2621-2650.
    [80]
    NANDY P, HAUSER A, MAATHUIS M H. High-dimensional consistency in score-based and hybrid structure learning[J]. The Annals of Statistics, 2018, 46(6A): 3151-3183.
    [81]
    ZHAO J J, HO S S. Improving Bayesian network local structure learning via data-driven symmetry correction methods[J]. International Journal of Approximate Reasoning, 2019, 107: 101-121. doi: 10.1016/j.ijar.2019.02.004
    [82]
    DAI J G, REN J, DU W C. Decomposition-based Bayesian network structure learning algorithm using local topology information[J]. Knowledge-Based Systems, 2020, 195: 105602. doi: 10.1016/j.knosys.2020.105602
    [83]
    SUN B D, ZHOU Y, WANG J J, et al. A new PC-PSO algorithm for Bayesian network structure learning with structure priors[J]. Expert Systems with Applications, 2021, 184: 115237. doi: 10.1016/j.eswa.2021.115237
    [84]
    仝兆景, 李金香, 乔征瑞. 一种具有结构先验的贝叶斯网络结构学习算法 [J]. 电子科技, 2023, 36(11): 1-7.

    TONG Z J , LI J X, QIAO Z R. A structural learning algorithm for Bayesian networks with structural priori[J]. Electronic Science and Technology, 2023, 36(11): 1-7(in Chinese).
    [85]
    RESSEGUIER N, GIORGI R, PAOLETTI X. Sensitivity analysis when data are missing not-at-random[J]. Epidemiology, 2011, 22(2): 282. doi: 10.1097/EDE.0b013e318209dec7
    [86]
    DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1977, 39(1): 1-22. doi: 10.1111/j.2517-6161.1977.tb01600.x
    [87]
    FRIEDMAN N. The Bayesian structural EM algorithm[EB/OL]. (2013-01-30)[2023-07-01]. http://arxiv.org/abs/1301.7373.
    [88]
    FRIEDMAN N. Learning belief networks in the presence of missing values and hidden variables[C]//Proceedings of the Fourteenth International Conference on Machine Learning. New York: ACM, 1997: 125-133.
    [89]
    WONG M L, GUO Y Y. Learning Bayesian networks from incomplete databases using a novel evolutionary algorithm[J]. Decision Support Systems, 2008, 45(2): 368-383. doi: 10.1016/j.dss.2008.01.002
    [90]
    SCANAGATTA M, CORANI G, ZAFFALON M, et al. Efficient learning of bounded-treewidth Bayesian networks from complete and incomplete data sets[J]. International Journal of Approximate Reasoning, 2018, 95: 152-166. doi: 10.1016/j.ijar.2018.02.004
    [91]
    QIAN G Q, WU Y H, XU M. Multiple change-points detection by empirical Bayesian information criteria and Gibbs sampling induced stochastic search[J]. Applied Mathematical Modelling, 2019, 72: 202-216. doi: 10.1016/j.apm.2019.03.012
    [92]
    GELFAND A E. Gibbs sampling[J]. Journal of the American Statistical Association, 2000, 95(452): 1300. doi: 10.1080/01621459.2000.10474335
    [93]
    BROOKS S. Markov chain Monte Carlo method and its application[J]. Journal of the Royal Statistical Society: Series D (the Statistician), 1998, 47(1): 69-100.
    [94]
    BODEWES T, SCUTARI M. Learning Bayesian networks from incomplete data with the node-average likelihood[J]. International Journal of Approximate Reasoning, 2021, 138: 145-160. doi: 10.1016/j.ijar.2021.07.015
    [95]
    LIU Y, CONSTANTINOU A C. Greedy structure learning from data that contain systematic missing values[J]. Machine Learning, 2022, 111(10): 3867-3896. doi: 10.1007/s10994-022-06195-8
    [96]
    ELIDAN G, LOTNER N, FRIEDMAN N, et al. Discovering hidden variables: a structure-based approach[C]//Proceedings of the Advances in Neural Information Processing Systems. [S.l.]: NIPS, 2000.
    [97]
    ELIDAN G, FRIEDMAN N. Learning hidden variable networks: the information bottleneck approach[J]. Journal of Machine Learning Research, 2005, 6: 81-127.
    [98]
    SPIRTES P, GLYMOUR C N, SCHEINES R, et al. Causation, prediction, and search[M]. Cambridge: MIT Press, 2000.
    [99]
    COLOMBO D, MAATHUIS M H, KALISCH M, et al. Learning high-dimensional DAGs with latent and selection variables[C]//Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence. [S. l. ]: DBLP, 2011: 850-850.
    [100]
    CLAASSEN T, MOOIJ J, HESKES T. Learning sparse causal models is not NP-hard[EB/OL]. (2013-09-26)[2023-07-01]. http://arxiv.org/abs/1309.6824.
    [101]
    SCHEINES R. An introduction to causal inference[EB/OL]. [2023-07-01]. http://www.academin.edu/3135379/An_introduction_to_causal_inference.
    [102]
    TRIANTAFILLOU S, TSAMARDINOS I. Constraint-based causal discovery from multiple interventions over overlapping variable sets[J]. The Journal of Machine Learning Research, 2015, 16(1): 2147-2205.
    [103]
    RAGHU V K, RAMSEY J D, MORRIS A, et al. Comparison of strategies for scalable causal discovery of latent variable models from mixed data[J]. International Journal of Data Science and Analytics, 2018, 6(1): 33-45. doi: 10.1007/s41060-018-0104-3
    [104]
    QI Z W, YUE K, DUAN L, et al. Dynamic embeddings for efficient parameter learning of Bayesian network with multiple latent variables[J]. Information Sciences, 2022, 590: 198-216. doi: 10.1016/j.ins.2022.01.020
    [105]
    RAMSEY J D. Scaling up greedy causal search for continuous variables[EB/OL]. (2015-10-11)[2023-07-01]. http://arxiv.org/abs/1507.07749v2.
    [106]
    TRIANTAFILLOU S, TSAMARDINOS I. Score-based vs constraint-based causal learning in the presence of confounders[C]//Proceedings of the Uncertainty in Artificial Intelligence. New York:[s.n.], 2016: 59-67.
    [107]
    DRTON M, EICHLER M, RICHARDSON T S. Computing maximum likelihood estimates in recursive linear models with correlated errors[J]. Journal of Machine Learning Research, 2009, 10: 2329-2348.
    [108]
    OGARRIO J M, SPIRTES P, RAMSEY J. A hybrid causal search algorithm for latent variable models[C]//Proceedings of the Conference on probabilistic graphical models. [S. l. ]: PMLR, 2016: 368-379.
    [109]
    JABBARI F, RAMSEY J, SPIRTES P, et al. Discovery of causal models that contain latent variables through Bayesian scoring of independence constraints[C]//Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2017: 142-157.
    [110]
    CHOBTHAM K, CONSTANTINOU A C. Bayesian network structure learning with causal effects in the presence of latent variables[C]//Proceedings of the International Conference on Probabilistic Graphical Models. [S. l. ]: PMLR, 2020: 101-112.
    [111]
    BERNSTEIN D, SAEED B, SQUIRES C, et al. Ordering-based causal structure learning in the presence of latent variables[C]// Proceedings of the International Conference on Artificial Intelligence and Statistics. [S. l. ]: PMLR, 2020: 4098-4108.
    [112]
    CHOBTHAM K, CONSTANTINOU A C, KITSON N K. Hybrid Bayesian network discovery with latent variables by scoring multiple interventions[J]. Data Mining and Knowledge Discovery, 2023, 37(1): 476-520. doi: 10.1007/s10618-022-00882-9
    [113]
    WANG L, YANG H Y, ZHANG S W, et al. Intuitionistic fuzzy dynamic Bayesian network and its application to terminating situation assessment[J]. Procedia Computer Science, 2019, 154: 238-248. doi: 10.1016/j.procs.2019.06.036
    [114]
    晏师励, 李德华. 基于动态贝叶斯网络的空战目标威胁等级评估[J]. 计算机与数字工程, 2015, 43(12): 2150-2154. doi: 10.3969/j.issn.1672-9722.2015.12.012

    YAN S L, LI D H. Threat level assessment of the air combat target based on DBN[J]. Computer & Digital Engineering, 2015, 43(12): 2150-2154(in Chinese). doi: 10.3969/j.issn.1672-9722.2015.12.012
    [115]
    HUANG C Q, DONG K S, HUANG H Q, et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 86-97.
    [116]
    BOURS M J. Bayes’ rule in diagnosis[J]. Journal of Clinical Epidemiology, 2021, 131: 158-160. doi: 10.1016/j.jclinepi.2020.12.021
    [117]
    刘桂芬, 孟海英, 张岩波. Bayes线性混合效应模型多中心临床试验应用[J]. 中国卫生统计, 2005, 22(4): 200-203. doi: 10.3969/j.issn.1002-3674.2005.04.003

    LIU G F, MENG H Y, ZHANG Y B. Bayes analysis of mixed model applied in amulti-center trials[J]. Chinese Journal of Health Statistics, 2005, 22(4): 200-203(in Chinese). doi: 10.3969/j.issn.1002-3674.2005.04.003
    [118]
    周旭毓, 方积乾. Meta分析中随机效应模型的Gibbs抽样及其应用[J]. 中国卫生统计, 2002, 19(4): 204-207. doi: 10.3969/j.issn.1002-3674.2002.04.004

    ZHOU X Y, FANG J Q. Gibbs sampling in random effects model for meta-analysis with application[J]. Chinese Journal of Health Statistics, 2002, 19(4): 204-207(in Chinese). doi: 10.3969/j.issn.1002-3674.2002.04.004
    [119]
    WIENS J, WALLACE B C. Special issue on machine learning for health and medicine[J]. Machine Learning, 2016, 102(3): 305-307. doi: 10.1007/s10994-015-5533-9
    [120]
    LIBBRECHT M W, NOBLE W S. Machine learning applications in genetics and genomics[J]. Nature Reviews Genetics, 2015, 16(6): 321-332. doi: 10.1038/nrg3920
    [121]
    ALIZADEHSANI R, ABDAR M, JALALI S M J, et al. Comparing the performance of feature selection algorithms for wart treatment selection[C]//Proceedings of the International Workshop on Future Technology. [S.l.: s.n.], 2019: 6-18.
    [122]
    PARMAR C, GROSSMANN P, RIETVELD D, et al. Radiomic machine-learning classifiers for prognostic biomarkers of head and neck cancer[J]. Frontiers in Oncology, 2015, 5: 272.
    [123]
    CHEN P, WU K Y, GHATTAS O. Bayesian inference of heterogeneous epidemic models: application to COVID-19 spread accounting for long-term care facilities[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 385: 114020. doi: 10.1016/j.cma.2021.114020
    [124]
    NASRHEIDARABADI N, HAKEMI L, KOLIVAND P, et al. Comparing performances of intelligent classifier algorithms for predicting type of pain in patients with spinal cord injury[J]. Electronic Physician, 2017, 9(7): 4847-4852. doi: 10.19082/4847
    [125]
    YOUSEFI L, TUCKER A, AL-LUHAYBI M, et al. Predicting disease complications using a stepwise hidden variable approach for learning dynamic Bayesian networks[C]//Proceedings of the IEEE 31st International Symposium on Computer-Based Medical Systems. Piscataway: IEEE Press, 2018: 106-111.
    [126]
    KHADEMI M, NEDIALKOV N S. Probabilistic graphical models and deep belief networks for prognosis of breast cancer[C]//Proceedings of the IEEE 14th International Conference on Machine Learning and Applications. Piscataway: IEEE Press, 2015: 727-732.
    [127]
    ALJAWAD D A, ALQAHTANI E, AL-KUHAILI G, et al. Breast cancer surgery survivability prediction using Bayesian network and support vector machines[C]//Proceedings of the International Conference on Informatics, Health & Technology. Piscataway: IEEE Press, 2017: 1-6.
    [128]
    REFAI A, MEROUANI H F, AOURAS H. Maintenance of a Bayesian network: application using medical diagnosis[J]. Evolving Systems, 2016, 7(3): 187-196. doi: 10.1007/s12530-016-9146-8
    [129]
    BANDYOPADHYAY S, WOLFSON J, VOCK D M, et al. Data mining for censored time-to-event data: a Bayesian network model for predicting cardiovascular risk from electronic health record data[J]. Data Mining and Knowledge Discovery, 2015, 29(4): 1033-1069. doi: 10.1007/s10618-014-0386-6
    [130]
    BUKHANOV N, BALAKHONTCEVA M, KOVALCHUK S, et al. Multiscale modeling of comorbidity relations in hypertensive outpatients[J]. Procedia Computer Science, 2017, 121: 446-450. doi: 10.1016/j.procs.2017.11.060
    [131]
    SA-NGAMUANG C, HADDAWY P, LUVIRA V, et al. Accuracy of dengue clinical diagnosis with and without NS1 antigen rapid test: comparison between human and Bayesian network model decision[J]. PLoS Neglected Tropical Diseases, 2018, 12(6): e0006573. doi: 10.1371/journal.pntd.0006573
    [132]
    SHI H Y, LUO G P, ZHENG H W, et al. Coupling the water-energy-food-ecology nexus into a Bayesian network for water resources analysis and management in the Syr Darya River Basin[J]. Journal of Hydrology, 2020, 581: 124387. doi: 10.1016/j.jhydrol.2019.124387
    [133]
    HUI E, STAFFORD R, MATTHEWS I M, et al. Bayesian networks as a novel tool to enhance interpretability and predictive power of ecological models[J]. Ecological Informatics, 2022, 68: 101539. doi: 10.1016/j.ecoinf.2021.101539
    [134]
    CHATRABGOUN O, HOSSEINIAN-FAR A, DANESHKHAH A. Constructing gene regulatory networks from microarray data using non-Gaussian pair-copula Bayesian networks[J]. Journal of Bioinformatics and Computational Biology, 2020, 18(4): 2050023. doi: 10.1142/S0219720020500237
    [135]
    YU H Y, KHAN F, GARANIYA V. Modified independent component analysis and Bayesian network-based two-stage fault diagnosis of process operations[J]. Industrial & Engineering Chemistry Research, 2015, 54(10): 2724-2742.
    [136]
    JIANG Q C, HUANG B, DING S X, et al. Bayesian fault diagnosis with asynchronous measurements and its application in networked distributed monitoring[J]. IEEE Transactions on Industrial Electronics, 2016, 63(10): 6316-6324. doi: 10.1109/TIE.2016.2577545
    [137]
    CHANG Y J, CHEN G M, WU X F, et al. Failure probability analysis for emergency disconnect of deepwater drilling riser using Bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2018, 51: 42-53. doi: 10.1016/j.jlp.2017.11.005
    [138]
    WANG Z W, WANG Z W, GU X W, et al. Feature selection based on Bayesian network for chiller fault diagnosis from the perspective of field applications[J]. Applied Thermal Engineering, 2018, 129: 674-683. doi: 10.1016/j.applthermaleng.2017.10.079
    [139]
    YEO C, BHANDARI J, ABBASSI R, et al. Dynamic risk analysis of offloading process in floating liquefied natural gas (FLNG) platform using Bayesian network[J]. Journal of Loss Prevention in the Process Industries, 2016, 41: 259-269. doi: 10.1016/j.jlp.2016.04.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(6)

    Article Metrics

    Article views(1242) PDF downloads(213) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return