| Citation: | FANG Y M,SHI Z Y,SONG H X. Detection method for complex dark spots on plastic gears based on U-Net++ and feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(9):3020-3029 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0418 |
Traditional defect detection algorithms exhibit poor performance in accurately detecting complex dark spots on the surface of plastic gears. There are three primary issues: firstly, inaccurately distinguishing the size and position of dark spots on the gear edge; secondly, a high rate of missed detection for light dark spots; thirdly, a tendency to misjudge the point gate as dark spots. This paper proposed an improved detection method for complex dark spots on plastic gears based on U-Net++ and feature fusion. The dark spot area was predicted through U-Net++ and corrected depending on gradient features. Multi-feature fusion analysis was utilized to provide the final judgment result, thus improving the accuracy and stability of complex dark spot detection. The test results demonstrate that the
| [1] |
石照耀, 方一鸣, 王笑一. 齿轮视觉检测仪器与技术研究进展[J]. 激光与光电子学进展, 2022, 59(14): 1415006.
SHI Z Y, FANG Y M, WANG X Y. Research progress in gear machine vision inspection instrument and technology[J]. Laser & Optoelectronics Progress, 2022, 59(14): 1415006(in Chinese).
|
| [2] |
欧阳志喜, 石照耀. 塑料齿轮设计与制造[M]. 北京: 化学工业出版社, 2011: 271-276.
OUYANG Z X, SHI Z Y. Design and manufacturing of plastic gears[M]. Beijing: Chemical Industry Press, 2011: 271-276(in Chinese) .
|
| [3] |
HAN K T M, UYYANONVARA B. A survey of blob detection algorithms for biomedical images[C]//Proceedings of the 7th International Conference of Information and Communication Technology for Embedded Systems. Piscataway: IEEE Press, 2016: 57-60.
|
| [4] |
杨亚, 陶红艳, 余成波. SURF与灰度差分在小模数塑料齿轮缺陷检测中的研究与应用[J]. 机械传动, 2018, 42(5): 156-160.
YANG Y, TAO H Y, YU C B. Research and application of SURF and gray difference in detection of small modulus plastic gear defect[J]. Journal of Mechanical Transmission, 2018, 42(5): 156-160(in Chinese).
|
| [5] |
李江波, 彭彦昆, 黄文倩, 等. 桃子表面缺陷分水岭分割方法研究[J]. 农业机械学报, 2014, 45(8): 288-293. doi: 10.6041/j.issn.1000-1298.2014.08.046
LI J B, PENG Y K, HUANG W Q, et al. Watershed segmentation method for segmenting defects on peach fruit surface[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 288-293(in Chinese). doi: 10.6041/j.issn.1000-1298.2014.08.046
|
| [6] |
韦玉科, 陈玉, 田洪金. 基于计算机视觉的焊点缺陷检测系统的设计[J]. 测控技术, 2015, 34(1): 138-141. doi: 10.3969/j.issn.1000-8829.2015.01.038
WEI Y K, CHEN Y, TIAN H J. Design of solder joint defect detection based on machine vision[J]. Measurement & Control Technology, 2015, 34(1): 138-141(in Chinese). doi: 10.3969/j.issn.1000-8829.2015.01.038
|
| [7] |
陶显, 侯伟, 徐德. 基于深度学习的表面缺陷检测方法综述[J]. 自动化学报, 2021, 47(5): 1017-1034.
TAO X, HOU W, XU D. A survey of surface defect detection methods based on deep learning[J]. Acta Automatica Sinica, 2021, 47(5): 1017-1034(in Chinese).
|
| [8] |
SU Y T, YAN P. A defect detection method of gear end-face based on modified YOLO-V3[C]//Proceedings of the 10th Institute of Electrical and Electronics Engineers International Conference on Cyber Technology in Automation, Control, and Intelligent Systems. Piscataway: IEEE Press, 2020: 283-288.
|
| [9] |
张广世, 葛广英, 朱荣华, 等. 基于改进YOLOv3网络的齿轮缺陷检测[J]. 激光与光电子学进展, 2020, 57(12): 121009.
ZHANG G S, GE G Y, ZHU R H, et al. Gear defect detection based on the improved YOLOv3 network[J]. Laser & Optoelectronics Progress, 2020, 57(12): 121009(in Chinese).
|
| [10] |
刘悦, 黄新波. 基于YOLOv4和改进分水岭算法的绝缘子爆裂检测定位研究[J]. 电网与清洁能源, 2021, 37(7): 51-57. doi: 10.3969/j.issn.1674-3814.2021.07.007
LIU Y, HUANG X B. Research on insulator burst fault identification based on YOLOv4 and improved watershed algorithm[J]. Power System and Clean Energy, 2021, 37(7): 51-57(in Chinese). doi: 10.3969/j.issn.1674-3814.2021.07.007
|
| [11] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
|
| [12] |
ZHOU Z W, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. U-Net++: a nested U-Net architecture for medical image segmentation[C]//Proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Berlin: Springer, 2018: 3-11.
|
| [13] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Transactions on Pattern Analysis and Machine Intelligence. Piscataway: IEEE Press, 2017: 640-651.
|
| [14] |
VON GIOI R G, JAKUBOWICZ J, MOREL J M, et al. LSD: a line segment detector[J]. Image Processing on Line, 2012, 2: 35-55. doi: 10.5201/ipol.2012.gjmr-lsd
|
| [15] |
ZHOU J, HUANG X H, PENG G. Recognition of airplanes using multi-feature fusion[J]. Journal of Huazhong University of Science and Technology, 2009, 37(1): 38-41.
|
| [16] |
LIN T Y, DOLLÁR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 936-944.
|
| [17] |
DUCHI J, HAZAN E, SINGER Y. Adaptive subgradient methods for online learning and stochastic optimization[J]. The Journal of Machine Learning Research, 2011, 12: 2121-2159.
|
| [18] |
RUDER S. An overview of gradient descent optimization algorithms[EB/OL]. (2017-06-15)[2023-02-01]. http://arxiv.org/abs/1609.04747v2.
|