| Citation: | LIU J T,GONG X Q,ZHOU N C,et al. Equipment interference and correction method in dynamic pressure field verification of low-speed wind tunnel[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1651-1661 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0310 |
As one of the quality indexes of the wind tunnel flow field, the dynamic pressure field of the wind tunnel directly affects the accuracy of experiment results, and the dynamic pressure field needs to be checked regularly. Dynamic pressure field verification equipment includes a five-hole probe, pipe rack, and guide rail (longitudinal beam and cross beam). The influence of verification equipment needs to be deducted when the dynamic pressure field is analyzed. Based on the national general computational fluid dynamics (CFD) software NNW-FlowStar for numerical wind tunnel engineering, a class of low-speed pressure outlet boundary conditions for simulating boundary layer flow was established. The residual convergence and calculation accuracy of the boundary conditions were verified by the low-speed flat plate turbulent boundary layer. Based on unstructured hybrid mesh and FlowStar, the numerical simulation of the FL-12 low-speed wind tunnel test section without any equipment, the test section only with the guide rail of the pipe rack, and the test section with both the pipe rack and the guide rail was carried out. The degree of influence and affected areas of the equipment were qualitatively displayed through a spatial dynamic pressure cloud diagram. The degree of influence of the verification equipment on the dynamic pressure of the test sections was given quantitatively through the spatial dynamic pressure distribution curve. In addition, the state with and without the guide rail of the pipe rack at the top of the test sections was numerically simulated, and the degree of influence of the guide rail of the pipe rack on the dynamic pressure of the test sections was obtained. The guide rail of the pipe rack had a great influence on the adjacent four probes. By decomposing the degree of influence of the verification equipment on the dynamic pressure and comparing the dynamic pressure correction curves of numerical and experimental results, the results show that the degree of influence of the guide rail of the pipe rack on the dynamic pressure of the central probe is six times that of the pipe rack. This verifies the rationality of the experimental dynamic pressure correction scheme ignoring the degree of influence of the pipe rack, and optimization suggestions to improve the accuracy of dynamic pressure verification are proposed.
| [1] |
王继明, 高云海, 焦仁山. 大型客机低速构型高雷诺数风洞腹撑支架干扰数值模拟[J]. 航空学报, 2020, 41(4): 123526.
WANG J M, GAO Y H, JIAO R S. Numerical simulation of ventral sting interference in high Reynolds number wind tunnel for civil aircraft low speed configuration[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(4): 123526(in Chinese).
|
| [2] |
代燚, 陈作钢, 马宁, 等. 低速风洞内部流场数值模拟[J]. 空气动力学学报, 2014, 32(2): 203-208. doi: 10.7638/kqdlxxb-2012.0085
DAI Y, CHEN Z G, MA N, et al. Numerical simulation of flow field inside the low-speed wind tunnel[J]. Acta Aerodynamica Sinica, 2014, 32(2): 203-208(in Chinese). doi: 10.7638/kqdlxxb-2012.0085
|
| [3] |
李红喆, 廖达雄, 丛成华. 连续式跨声速风洞大开角段整流装置设计数值模拟[J]. 空气动力学学报, 2015, 33(2): 198-203.
LI H Z, LIAO D X, CONG C H. Numerical simulation of flow conditioning device design in wide angle diffuser of continuous transonic wind tunnels[J]. Acta Aerodynamica Sinica, 2015, 33(2): 198-203(in Chinese).
|
| [4] |
丛成华, 刘琴, 张志峰, 等. 专用跨声速风洞开孔壁试验段设计数值模拟[J]. 航空学报, 2012, 33(6): 1014-1019.
CONG C H, LIU Q, ZHANG Z F, et al. Numerical simulation of design of transonic wind tunnel perforated test section[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(6): 1014-1019(in Chinese).
|
| [5] |
陈坚强, 吴晓军, 张健, 等. FlowStar: 国家数值风洞(NNW)工程非结构通用CFD软件[J]. 航空学报, 2021, 42(9): 625739.
CHEN J Q, WU X J, ZHANG J, et al. FlowStar: general unstructured-grid CFD software for national numerical windtunnel (NNW) project[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625739(in Chinese).
|
| [6] |
CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4): 1051-1062. doi: 10.2514/1.C033143
|
| [7] |
CHEN J T, ZHANG Y B, ZHAO H, et al. Numerical investigations of the NASA common research model with aeroelastic twist[J]. Journal of Aircraft, 2018, 55(4): 1469-1481. doi: 10.2514/1.C034370
|
| [8] |
张耀冰, 唐静, 陈江涛, 等. 基于非结构混合网格的CHN-T1标模气动特性预测[J]. 空气动力学学报, 2019, 37(2): 262-271.
ZHANG Y B, TANG J, CHEN J T, et al. Aerodynamic characteristics prediction of CHN-T1standard model with unstructured grid[J]. Acta Aerodynamica Sinica, 2019, 37(2): 262-271(in Chinese).
|
| [9] |
张耀冰, 邓有奇, 吴晓军, 等. DLR-F6翼身组合体数值计算[J]. 空气动力学学报, 2011, 29(2): 163-169. doi: 10.3969/j.issn.0258-1825.2011.02.006
ZHANG Y B, DENG Y Q, WU X J, et al. Drag prediction of DLR-F6 using MFlow unstructured mesh solver[J]. Acta Aerodynamica Sinica, 2011, 29(2): 163-169(in Chinese). doi: 10.3969/j.issn.0258-1825.2011.02.006
|
| [10] |
ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372. doi: 10.1016/0021-9991(81)90128-5
|
| [11] |
张培红, 张耀冰, 周桂宇, 等. 面向混合网格高精度阻力预测的熵修正方法[J]. 航空学报, 2018, 39(9): 122030.
ZHANG P H, ZHANG Y B, ZHOU G Y, et al. Entropy correction method for high accuracy drag prediction with mixed grids[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9): 122030(in Chinese).
|
| [12] |
张培红, 张耀冰, 周桂宇, 等. 面向非结构混合网格高精度阻力预测的梯度求解方法[J]. 航空学报, 2018, 39(1): 121415.
ZHANG P H, ZHANG Y B, ZHOU G Y, et al. Gradient calculation method of unstructured mixed grids for improving drag prediction accuracy[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 121415(in Chinese).
|
| [13] |
VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions[C]//Proceedings of the 31st Aerospace Sciences Meeting. Reston: AIAA, 1993: 880.
|
| [14] |
SPALART P, ALLMARAS S. A one-equation turbulence model for aerodynamic flows[C]// Procadings of the 30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992: 439.
|
| [15] |
JAMESON A, YOON S. Lower-upper implicit schemes with multiple grids for the Euler equations[J]. AIAA Journal, 1987, 25(7): 929-935. doi: 10.2514/3.9724
|
| [16] |
唐静, 李彬, 周乃春, 等. 基于非结构网格流场超大规模并行计算[J]. 空气动力学学报, 2019, 37(1): 61-67.
TANG J, LI B, ZHOU N C, et al. Large scale parallel computing for fluid dynamics on unstructured grid[J]. Acta Aerodynamica Sinica, 2019, 37(1): 61-67(in Chinese).
|
| [17] |
BLAZEK J. Computational fluid dynamics: principles and applications[M]. 3rd ed. Amsterdam: Elsevier, 2015: 262-264.
|
| [18] |
NASA Langley Research Center Turbulence Modeling Resource. 2D zero pressure gradient flate plate verification case[EB/OL]. [2023-05-27]. http://turbmodels.larc.nasa.gov/flatplate_grids.html.
|
| [19] |
NASA Langley Research Center Turbulence Modeling Resource. SA expected results-2D zero pressure gradient flat plate[EB/OL]. [2023-05-27]. http://turbmodels.larc.nasa.gov/flatplate_sa.html.
|
| [20] |
中国空气动力研究与发展中心. 4米×3米风洞(FL-12)[EB/OL]. [2023-05-27]. http://www.cardc.cn//Dev_Read.Asp?ChannelId=4&ClassId=18&Id=39.
CARDC. 4 m×3 m wind tunnel (FL-12) [EB/OL]. [2023-05-27]. http://www.cardc.cn//Dev_Read.Asp?ChannelId=4&ClassId=18&Id=39.
|