Volume 51 Issue 5
May  2025
Turn off MathJax
Article Contents
HAN X,ZHOU Y,HUANG H,et al. Design and verification of high-precision dynamic temperature control system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1539-1547 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0297
Citation: HAN X,ZHOU Y,HUANG H,et al. Design and verification of high-precision dynamic temperature control system[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1539-1547 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0297

Design and verification of high-precision dynamic temperature control system

doi: 10.13700/j.bh.1001-5965.2023.0297
Funds:

China Academy of Space Technology Science Fund for Distinguished Young Scholars (R-WY-JQRC-17) 

More Information
  • Corresponding author: E-mail:hhuang@buaa.edu.com
  • Received Date: 30 May 2023
  • Accepted Date: 18 Jul 2023
  • Available Online: 05 Aug 2023
  • Publish Date: 04 Aug 2023
  • A high-precision dynamic temperature control system is proposed, developed, and tested with the goal of addressing the issue that the existing ground temperature environment simulation equipment finds it challenging to realize the temperature deviation test of scientific loads with extremely high temperature control accuracy in deep space exploration. The system uses a liquid nitrogen cold plate as the cold source, and it realizes the high precision static and dynamic temperature control on the 300mm×300mm contact surface by means of electric heating, heat pipe heat transfer, and solid structure heat conduction. The test results demonstrate that the temperature control system can accomplish high-precision temperature stability control with a temperature variation of less than ±0.001℃ within the contact surface temperature range of −10~45 °C. In addition, it can also realize the linear control of temperature rise and fall rate of ± 0.05 ℃/1 000 s~1 ℃/1 000 s on the load contact surface. Compared with the set temperature curve, the whole-process temperature tracking error is less than 0.003 ℃ and 0.04 ℃. The established temperature control system has the ability to conduct high-precision temperature dynamic deviation tests. It will have good application prospects in tasks such as deep space exploration payload development and testing.

     

  • loading
  • [1]
    CHUTANI R K, GALLIOU S, PASSILLY N, et al. Thermal management of fully LTCC-packaged Cs vapour cell for MEMS atomic clock[J]. Sensors and Actuators A: Physical, 2012, 174: 58-68. doi: 10.1016/j.sna.2011.11.025
    [2]
    WANG B, LOU Y D, LIU J N, et al. Analysis of BDS satellite clocks in orbit[J]. GPS Solutions, 2016, 20(4): 783-794. doi: 10.1007/s10291-015-0488-7
    [3]
    WANG W, WANG Y P, YU C, et al. Spaceborne atomic clock performance review of BDS-3 MEO satellites[J]. Measurement, 2021, 175: 109075. doi: 10.1016/j.measurement.2021.109075
    [4]
    于峰, 徐娜娜, 赵振明. “高分四号” 卫星相机在轨温度分析及热设计优化[J]. 北京亚洲成人在线一二三四五六区学报, 2021, 47(1): 177-186.

    YU F, XU N N, ZHAO Z M. On-orbit temperature analysis and thermal design optimization for camera on GF-4 satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 177-186(in Chinese).
    [5]
    刘红, 张晓峰, 冯建朝, 等. 精密热控技术在太极一号卫星上的应用[J]. 空间科学学报, 2021, 41(2): 337-341. doi: 10.11728/cjss2021.02.337

    LIU H, ZHANG X F, FENG J C, et al. Application of precision thermal control techniques in Taiji-1 satellite[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341(in Chinese). doi: 10.11728/cjss2021.02.337
    [6]
    WEI R, ZHOU Y P, TONG Y L, et al. Ground experimental verification of high-stability temperature control system and flight data analysis[C]//Proceeding of the Signal and Information Processing, Networking and Computers. Berlin: Springer, 2023: 583-591.
    [7]
    龚洁. 基于G-M制冷机的大尺寸冷屏设计方法[J]. 航空动力学报, 2019, 34(2): 341-347.

    GONG J. Design method of large dimension cold shield based on G-M cryocooler[J]. Journal of Aerospace Power, 2019, 34(2): 341-347(in Chinese).
    [8]
    YANG S, DU C S, YANG X W, et al. Thermal control of primary mirror of space solar telescope[J]. Optik, 2021, 229: 166290. doi: 10.1016/j.ijleo.2021.166290
    [9]
    MENG Q L, ZHAO Z M, ZHANG T, et al. Experimental study on the transient behaviors of mechanically pumped two-phase loop with a novel accumulator for thermal control of space camera payload[J]. Applied Thermal Engineering, 2020, 179: 115714. doi: 10.1016/j.applthermaleng.2020.115714
    [10]
    LIU C, LI Z M, LIN B Y, et al. Analytical study on temperature control of fixture with multi-constraints in thermal vacuum test[C]//Proceeding of the IEEE 6th International Conference on Control Science and Systems Engineering. Piscataway: IEEE Press, 2020: 178-183.
    [11]
    刘春, 林博颖, 武飞, 等. 一种用于单机热真空试验快速升降温的调温平台设计及应用[J]. 航天器环境工程, 2020, 37(2): 166-171. doi: 10.12126/see.2020.02.011

    LIU C, LIN B Y, WU F, et al. Design and application of a temperature control platform used for rapid heating and cooling in thermal vacuum test[J]. Spacecraft Environment Engineering, 2020, 37(2): 166-171(in Chinese). doi: 10.12126/see.2020.02.011
    [12]
    祁雪琴, 刘智勇, 颜昌林. 鱼骨式热沉调温系统的数值模拟与试验研究[J]. 低温工程, 2021(2): 25-32. doi: 10.3969/j.issn.1000-6516.2021.02.005

    QI X Q, LIU Z Y, YAN C L. Numerical simulation and experimental research of fishbone heat sink temperature adjusting system[J]. Cryogenics, 2021(2): 25-32(in Chinese). doi: 10.3969/j.issn.1000-6516.2021.02.005
    [13]
    冯宁, 刘智勇, 颜昌林, 等. 流速对鱼骨式与板式调温热沉性能的影响[J]. 兰州交通大学学报, 2022, 41(5): 115-122.

    FENG N, LIU Z Y, YAN C L, et al. Effect of flow velocity on the performance of fishbone type and plate type temperature regulating heat sink[J]. Journal of Lanzhou Jiaotong University, 2022, 41(5): 115-122(in Chinese).
    [14]
    LEROY C, MAISONNEUVE M, PIAT M, et al. Simulation of the Planck-HFI thermal control system[C]//Proceeding of the Modeling, Systems Engineering, and Project Management for Astronomy III. Bellinham: SPIE, 2008: 701713.
    [15]
    LEMMEN M, KOUWEN J, KOOREVAAR F, et al. In-flight results of the sciamachy optical assembly active thermal control system[C]//Proceeding of the International Conference On Environmental Systems. Warrendale: SAE International, 2004.
    [16]
    申春梅, 于峰, 刘文凯. FY-3D卫星高光谱温室气体监测仪热控设计及在轨验证[J]. 北京亚洲成人在线一二三四五六区学报, 2020, 46(11): 2026-2038.

    SHEN C M, YU F, LIU W K. Thermal control system design and on-orbit verification of hyperspectral greenhouse gas monitor on FY-3D satellite[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2026-2038(in Chinese).
    [17]
    刘中华. 热真空试验标准与方法分析[J]. 电子产品可靠性与环境试验, 2016, 34(4): 16-20.

    LIU Z H. Analysis of the standards and methods of thermal vacuum test[J]. Electronic Product Reliability and Environmental Testing, 2016, 34(4): 16-20(in Chinese).
    [18]
    李春林. 空间光学遥感器热控技术研究[J]. 宇航学报, 2014, 35(8): 863-870. doi: 10.3873/j.issn.1000-1328.2014.08.001

    LI C L. Research on space optical remote sensor thermal control technique[J]. Journal of Astronautics, 2014, 35(8): 863-870(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.08.001
    [19]
    XIAO H, YING Z, JIA R J, et al. Design of temperature fluctuation test platform based on radiation heat transfer[C]//Proceeding of the MATEC Web of Conferences. Paris: EDP Sciences, 2019, 256: 03002.
    [20]
    杨涛, 赵石磊, 高腾, 等. 航天分散热源控温用环路热管设计及飞行应用[J]. 宇航学报, 2021, 42(6): 798-806. doi: 10.3873/j.issn.1000-1328.2021.06.014

    YANG T, ZHAO S L, GAO T, et al. Design and in-orbit application of temperature controlled loop heat pipe for aerospace distributed heat sources[J]. Journal of Astronautics, 2021, 42(6): 798-806(in Chinese). doi: 10.3873/j.issn.1000-1328.2021.06.014
    [21]
    ZHONG G S, TANG Y, DING X R, et al. Experimental study of a large-area ultra-thin flat heat pipe for solar collectors under different cooling conditions[J]. Renewable Energy, 2020, 149: 1032−1039. doi: 10.1016/j.renene.2019.10.093
    [22]
    李德富, 刘小旭, 邓婉, 等. 热管技术在航天器热控制中的应用[J]. 航天器环境工程, 2016, 33(6): 625-633. doi: 10.3969/j.issn.1673-1379.2016.06.009

    LI D F, LIU X X, DENG W, et al. Application of heat pipe technology in spacecraft thermal control[J]. Spacecraft Environment Engineering, 2016, 33(6): 625-633(in Chinese). doi: 10.3969/j.issn.1673-1379.2016.06.009
    [23]
    中央军委装备发展部. 热敏电阻器通用规范:GJB 601B-2018[S]. 北京: 工业与信息化标准网, 2018: 19-20.

    Central Military Commission Equipment Development Department. General specification for thermistor: GJB 601B-2018[S]. Beijing: Industry and Information Standards Net, 2018: 19-20(in Chinese).
    [24]
    LIU G, GUO L, LIU C L, et al. Evaluation of different calibration equations for NTC thermistor applied to high-precision temperature measurement[J]. Measurement, 2018, 120: 21-27. doi: 10.1016/j.measurement.2018.02.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(4)

    Article Metrics

    Article views(617) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return