Volume 51 Issue 5
May  2025
Turn off MathJax
Article Contents
GUO J F,ZHANG Z H. Track obscured vehicles by fusing full-scale features with trajectory correction[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1608-1619 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0288
Citation: GUO J F,ZHANG Z H. Track obscured vehicles by fusing full-scale features with trajectory correction[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1608-1619 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0288

Track obscured vehicles by fusing full-scale features with trajectory correction

doi: 10.13700/j.bh.1001-5965.2023.0288
Funds:

National Natural Science Foundation of China (51465034) 

More Information
  • Corresponding author: E-mail:zzh15536308429@163.com
  • Received Date: 29 May 2023
  • Accepted Date: 28 Jul 2023
  • Available Online: 29 May 2025
  • Publish Date: 01 Sep 2023
  • An occluded vehicle tracking method that fuses full-scale features with trajectory correction based on the Deep SORT algorithm is proposed to improve the tracking drift and identity switching (IDS) problems caused by occlusion in vehicle tracking. First, a full-scale feature extraction network is introduced to extract features of different scales of the target and to achieve adaptive dynamic fusion to enhance the apparent features of the target. Then, a trajectory correction approach is suggested to fix the tracking trajectory during the occlusion process, and the Kalman filter parameters are adjusted in order to minimize the cumulative linear errors during the occlusion process and optimize the target motion features. Finally, occluded vehicle tracking is achieved by combining the appearance features and the motion features. The feasibility of the proposed method is verified by ablation experiments and visualized analysis. The suggested approach successfully resolves the IDS issue in obscured vehicle tracking and increases the robustness of vehicle tracking, as demonstrated by experimental results on the KITTI dataset, which yield the highest overall score of 78.13% and the fewest number of IDS (192), when compared to typical existing methods.

     

  • loading
  • [1]
    PARK Y, DANG L M, LEE S, et al. Multiple object tracking in deep learning approaches: a survey[J]. Electronics, 2021, 10(19): 2406. doi: 10.3390/electronics10192406
    [2]
    LUO W H, XING J L, MILAN A, et al. Multiple object tracking: a literature review[J]. Artificial Intelligence, 2021, 293: 103448. doi: 10.1016/j.artint.2020.103448
    [3]
    周雪, 梁超, 何均洋, 等. 一体化多目标跟踪算法研究综述[J]. 电子科技大学学报, 2022, 51(5): 728-736. doi: 10.12178/1001-0548.2021349

    ZHOU X, LIANG C, HE J Y, et al. A survey on one-shot multi-object tracking algorithm[J]. Journal of University of Electronic Science and Technology of China, 2022, 51(5): 728-736(in Chinese). doi: 10.12178/1001-0548.2021349
    [4]
    韩瑞泽, 冯伟, 郭青, 等. 视频单目标跟踪研究进展综述[J]. 计算机学报, 2022, 45(9): 1877-1907. doi: 10.11897/SP.J.1016.2022.01877

    HAN R Z, FENG W, GUO Q, et al. Single object tracking research: a survey[J]. Chinese Journal of Computers, 2022, 45(9): 1877-1907(in Chinese). doi: 10.11897/SP.J.1016.2022.01877
    [5]
    DENDORFER P, OŠEP A, MILAN A, et al. MOTChallenge: a benchmark for single-camera multiple target tracking[J]. International Journal of Computer Vision, 2021, 129(4): 845-881. doi: 10.1007/s11263-020-01393-0
    [6]
    CIAPARRONE G, LUQUE SÁNCHEZ F, TABIK S, et al. Deep learning in video multi-object tracking: a survey[J]. Neurocomputing, 2020, 381: 61-88. doi: 10.1016/j.neucom.2019.11.023
    [7]
    EMAMI P, PARDALOS P M, ELEFTERIADOU L, et al. Machine learning methods for data association in multi-object tracking[J]. ACM Computing Surveys, 2020, 53(4): 1-34.
    [8]
    BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2016: 3464-3468.
    [9]
    WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2017: 3645-3649.
    [10]
    DU Y H, ZHAO Z C, SONG Y, et al. StrongSORT: make DeepSORT great again[J]. IEEE Transactions on Multimedia, 2023, 25: 8725-8737. doi: 10.1109/TMM.2023.3240881
    [11]
    CAO J K, PANG J M, WENG X S, et al. Observation-centric SORT: rethinking SORT for robust multi-object tracking[EB/OL]. (2023-03-16)[2023-03-20]. http://arxiv.org/abs/2203.14360v3.
    [12]
    MAGGIOLINO G, AHMAD A, CAO J K, et al. Deep OC-sort: multi-pedestrian tracking by adaptive re-identification[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2023: 3025-3029.
    [13]
    AHARON N, ORFAIG R, BOBROVSKY B Z. BoT-SORT: robust associations multi-pedestrian tracking[EB/OL]. (2022-07-07)[2023-03-20]. http://arxiv.org/abs/2206.14651v2.
    [14]
    SEIDENSCHWARZ J, BRASÓ G, SERRANO V C, et al. Simple cues lead to a strong multi-object tracker[EB/OL]. (2022-06-09)[2023-03-20]. http://arxiv.org/abs/2206.04656v7.
    [15]
    YANG F, ODASHIMA S, MASUI S, et al. Hard to track objects with irregular motions and similar appearances? make it easier by buffering the matching space[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE Press, 2023: 4788-4797.
    [16]
    马永杰, 马芸婷, 程时升, 等. 基于改进YOLOv3模型与Deep-SORT算法的道路车辆检测方法[J]. 交通运输工程学报, 2021, 21(2): 222-231.

    MA Y J, MA Y T, CHENG S S, et al. Road vehicle detection method based on improved YOLOv3 model and deep-SORT algorithm[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 222-231(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(233) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return