| Citation: | WANG W J,WANG Z,PANG W K,et al. Angular momentum envelope analysis method of gimbal-type momentum exchange device[J]. Journal of Beijing University of Aeronautics and Astronautics,2025,51(5):1591-1598 (in Chinese) doi: 10.13700/j.bh.1001-5965.2023.0268 |
To improve the angular momentum envelope analysis efficiency of typical gimbal-type momentum exchange devices such as single-gimbal control moment gyroscope (SGCMG), double-gimbal momentum wheel (DGMW), and magnetically suspended control and sensing gyroscope (MSCSG), a gimbal equivalent-based angular momentum envelope analysis method of gimbal-type momentum wheel was proposed. The similarities and differences of angular momentum exchange principles between SGCMG and DGMW based on a mechanical solid gimbal and MSCSG based on a magnetic levitation micro-gimbal. The equivalent coefficients between radial/axial angular momentum components of SGCMG and MSCSG were studied and designed. The biorthogonal solid gimbal of SGCMG was used to construct the equivalent model of the MSCSG micro-gimbal. The angular momentum expressions of ergodic methods for MSCSG and DGMW were compared, and the applicability of the gimbal equivalent method in the angular momentum analysis of DGMW was analyzed. The error of the gimbal equivalent method was quantified to prove that the absolute error and the direction error of angular momentum calculated by the gimbal equivalent method are both less than one thousandth compared with the traditional ergodic method. The parameter dimensions of the two methods were analyzed to prove the rapidity of the gimbal equivalent method. The angular momentum envelopes of MSCSG and DGMW were simulated and compared based on the traditional ergodic method and the gimbal equivalent method, respectively, which proved the effectiveness of the method. This method has a wider application in angular momentum envelope analysis of MSCSG groups.
| [1] |
周军, 刘莹莹. 航天器姿态与轨道控制原理[M]. 西安: 西北工业大学出版社, 2016: 130-133.
ZHOU J, LIU Y Y. Principle of spacecraft attitude and orbit control[M]. Xi’an: Northwestern Polytechnical University Press, 2016: 130-133(in Chinese).
|
| [2] |
王巍. 新型惯性技术发展及在宇航领域的应用[J]. 红外与激光工程, 2016, 45(3): 11-16.
WANG W. Development of new inertial technology and its application in aerospace field[J]. Infrared and Laser Engineering, 2016, 45(3): 11-16(in Chinese).
|
| [3] |
YIN Z Y, CAI Y W, LIU B, et al. Application of spherical magnetic bearing in magnetically suspended control and sensitive gyro[J]. Mathematical Problems in Engineering, 2020, 2020: 7698794.
|
| [4] |
魏静波. 磁悬浮微框架动量轮控制技术研究[D]. 长沙: 国防科技大学, 2016: 19-21.
WEI J B. Research on control technology of momentum wheel of magnetic suspension micro-frame[D]. Changsha: National University of Defense Technology, 2016: 19-21(in Chinese).
|
| [5] |
吕奇超, 周一恒, 吕东元, 等. 基于自适应滤波器的磁悬浮控制力矩陀螺内转子振动抑制[J]. 导航与控制, 2021, 20(1): 70-77.
LYU Q C, ZHOU Y H, LYU D Y, et al. Vibration suppression of the inner rotor of a small-sized magnetically suspended control moment gyroscope based on adaptive filter[J]. Navigation and Control, 2021, 20(1): 70-77(in Chinese).
|
| [6] |
刘彬, 房建成, 刘刚. 一种磁悬浮陀螺飞轮方案设计与关键技术分析[J]. 航空学报, 2011, 32(8): 1478-1487.
LIU B, FANG J C, LIU G. Design of a magnetically suspended gyrowheel and analysis of key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1478-1487(in Chinese).
|
| [7] |
REN Y, CHEN X C, CAI Y W, et al. Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4921-4932. doi: 10.1109/TIE.2017.2772161
|
| [8] |
王卫杰, 任元, 刘强, 等. 球面磁悬浮万向飞轮转子轮盘优化设计[J]. 航空学报, 2016, 37(9): 2874-2883.
WANG W J, REN Y, LIU Q, et al. Optimal design of rotary table for spherical rotor of magnetically suspending gambling flywheel[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9): 2874-2883(in Chinese).
|
| [9] |
YU C M, WANG Z, REN Y, et al. MSCSG two degree of freedom attitude measurement method[J]. Journal of Physics: Conference Series, 2019, 1176: 042054. doi: 10.1088/1742-6596/1176/4/042054
|
| [10] |
杨倩. 动基座下双框架 MSCMG 磁轴承系统稳定性研究[D]. 北京: 北京亚洲成人在线一二三四五六区, 2011.
YANG Q. Research on stability of magnetic bearing system for double gimbal magnetically suspended control moment gyroscope on moving base [D]. Beijing: Beihang University, 2011(in Chinese).
|
| [11] |
任元, 王卫杰, 刘强, 等. 一种磁悬浮控制敏感陀螺: CN104613950B[P]. 2017-06-27.
REN Y, WANG W J, LIU Q, et al. A kind of magnetically suspended control and sensing gyroscopic: CN104613950B [P]. 2017-06-27(in Chinese).
|
| [12] |
李佳益. 磁悬浮微框架动量轮动力学建模与仿真研究[D]. 长沙: 国防科技大学, 2012: 2-4.
LI J Y. Research on dynamic modeling and simulation of momentum wheel of magnetic levitation micro-frame[D]. Changsha: National University of Defense Technology, 2012: 2-4(in Chinese).
|
| [13] |
MARGULIES G, AUBURN J N. Geometric theory of single-gimbal control moment gyro systems[J]. Journal of the Astronautical Sciences, 1978, 26(2): 159-191.
|
| [14] |
WIE B. Singularity analysis and visualization for single-gimbal control moment gyro systems[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(2): 271-282. doi: 10.2514/1.9167
|
| [15] |
TANG L, XU S J. Geometric analysis of singularity for single-gimbal control moment gyro systems[J]. Chinese Journal of Aeronautics, 2005, 18(4): 2346-2353.
|
| [16] |
王磊, 赵育善. 双框架控制力矩陀螺奇异分析及可视化[J]. 宇航学报, 2009, 30(2): 613-619.
WANG L, ZHAO Y S. Singularity analysis and visualization of double-gimbaled control moment gyro systems[J]. Journal of Astronautics, 2009, 30(2): 613-619(in Chinese).
|
| [17] |
刘锋. 金字塔构型变速控制力矩陀螺操纵律和参数优化设计[D]. 哈尔滨: 哈尔滨工业大学, 2018.
LIU F. Control law and parameter optimization design of pyramid variable speed control moment gyro[D]. Harbin: Harbin Institute of Technology, 2018(in Chinese).
|
| [18] |
李传江, 郭延宁, 马广富. 单框架控制力矩陀螺的奇异分析及操纵律设计[J]. 宇航学报, 2010, 31(10): 2346-2353.
LI C J, GUO Y N, MA G F. Singularity analysis and steering law design for single-gimbal control moment gyroscopes[J]. Journal of Astronautics, 2010, 31(10): 2346-2353(in Chinese).
|
| [19] |
侯二永. 磁悬浮控制力矩陀螺结构设计与动力学分析[D]. 长沙: 国防科技大学, 2013: 27-28.
HOU E Y. Structural design and dynamic analysis of magnetic suspension control moment gyro[D]. Changsha: National University of Defense Technology, 2013: 27-28(in Chinese).
|
| [20] |
宁欣, 韩邦成, 房建成. 基于干扰观测器的双框架变速率控制力矩陀螺解耦控制[J]. 机械工程学报, 2017, 53(10): 52-59. doi: 10.3901/JME.2017.10.052
NING X, HAN B C, FANG J C. Disturbance observer based decoupling method of double-gimbaled variable speed control moment gyroscope[J]. Journal of Mechanical Engineering, 2017, 53(10): 52-59(in Chinese). doi: 10.3901/JME.2017.10.052
|
| [21] |
魏孔明, 吴忠, 刘涛. 单框架控制力矩陀螺构型分析与奇异可视化[J]. 中国空间科学技术, 2013, 33(1): 21-29.
WEI K M, WU Z, LIU T. Configuration analysis and singularity visualization of single gimbal control moment gyroscopes[J]. Chinese Space Science and Technology, 2013, 33(1): 21-29(in Chinese).
|
| [22] |
雷拥军, 袁利. 轮系航天器的角动量包络分析及角动量管理[J]. 中国空间科学技术, 2017, 37(6): 1-9.
LEI Y J, YUAN L. Momentum envelope analysis and momentum management for spacecraft with a flywheel array[J]. Chinese Space Science and Technology, 2017, 37(6): 1-9(in Chinese).
|
| [23] |
徐洪亮, 翟传润, 战兴群, 等. 双框架控制力矩陀螺伪逆控制律设计及仿真[J]. 上海交通大学学报, 2008, 42(5): 851-855.
XU H L, ZHAI C R, ZHAN X Q, et al. Design and simulation of pseudo-inverse control law for double gimbal control moment gyro[J]. Journal of Shanghai Jiao Tong University, 2008, 42(5): 851-855(in Chinese).
|
| [24] |
焉宁. 敏捷机动小卫星姿态控制方法的仿真与实验研究[D]. 北京: 北京亚洲成人在线一二三四五六区, 2011.
YAN N. Research on the simulation and experiment of attitude control method for agile small satellite [D]. Beijing: Beihang University, 2011(in Chinese).
|